Refractive index of silicon and germanium and its wavelength and temperature derivatives

Cite as: Journal of Physical and Chemical Reference Data 9, 561 (1980); https://doi.org/10.1063/1.555624 Published Online: 15 October 2009

H. H. Li

ARTICLES YOU MAY BE INTERESTED IN

The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths

Journal of Applied Physics 60, 841 (1986); https://doi.org/10.1063/1.337386

Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures Applied Physics Letters 101, 041905 (2012); https://doi.org/10.1063/1.4738989

Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm

Applied Physics Letters 74, 3338 (1999); https://doi.org/10.1063/1.123337

Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives

H. H. Li

Center for Information and Numerical Data Analysis and Synthesis, Purdue University, West Lafayette, Indiana 47906

Refractive index data for silicon and germanium were searched, compiled, and analyzed. Recommended values of refractive index for the transparent spectral region were generated in the ranges 1.2 to 14 μ m and 100–750 K for silicon, and 1.9 to 16 μ m and 100–550 K for germanium. Generation of these values was based on a dispersion equation which best fits selected data sets covering wide temperature and wavelength ranges. Temperature derivative of refractive index was simply calculated from the first derivative of the equation with respect to temperature. The results are in concordance with the existing dn/dT data.

Key words: Germanium; optical constants; refractive index; silicon; temperature coefficient of refractive index.

Contents

	Page		Page
List of Tables	562	Table A-7. Experimental Data on the Tem-	
List of Figures	561	perature Derivative of Refractive Index of	
List of Symbols	562	Germanium (Wavelength Dependence)	656
1. Introduction	562	Table A-8. Experimental Data on the Tem-	
2. Theoretical Background on Refractive Dis-		perature Derivative of Refractive Index of	
persion in Crystals	562	Germanium (Temperature Dependence).	658
3. Presentation of Numerical Data	564	•	
3.1. Silicon	565	List of Figures	
3.2. Germanium	582		Page
4. Conclusions and Recommendations	599	1. Available Experimental Refractive Index	
5. Acknowledgments	599	of Silicon (Wavelength Dependence)	569
6. References	599	2. Available Experimental Refractive Index	
Appendix	602	of Silicon (Temperature Dependence)	570
Table A-1. Experimental Data on the Re-		3. Selected Experimental Refractive Index of	
fractive Index of Silicon (Wavelength		Silicon (Wavelength Dependence)	571
Dependence)	602	4. Available Experimental dn/dT of Silicon	0
Table A-2. Experimental Data on the Re-		(Wavelength Dependence)	572
fractive Index of Silicon (Temperature		5. Available Experimental dn/dT of Silicon	01.2
Dependence)	615	(Temperature Dependence)	578
Table A-3. Experimental Data on the Tem-			016
perature Derivative of Refractive Index of		6. Variation of Refractive Index of Silicon	
Silicon (Wavelength Dependence)	62 3	with Temperature at Wavelength 3 μm	574
Table A-4. Experimental Data on the Tem-		[12]	514
perature Derivative of Refractive Index of		7. Temperature Dependence of the Optical	P P7 8
Silicon (Temperature Dependence)	624	Energy Gap of Silicon [15]	575
Table A-5. Experimental Data on the Re-		8. Recommended $n-\lambda-T$ Diagram of Silicon.	577
fractive Index of Germanium (Wave-		9. Recommended dn/dT - λ - T Diagram of Sil-	
length (Dependence)	626	icon	579
Table A-6. Experimental Data on the Re-		10. Recommended $dn/d\lambda$ Curve of Silicon at	
fractive Index of Germanium (Tempera-		293 K	581
ture Dependence)	649	11. Available Experimental Refractive Index of	
© 1980 by the U.S. Secretary of Commerce on behalf	of the	Germanium (Wavelength Dependence)	586
United States. This copyright is assigned to the Ar	nerican	12. Available Experimental Refractive Index of	
Institute of Physics and the American Chemical Society	y.	Germanium (Temperature Dependence).	587

	Page
13. Selected Experimental Refractive Index of	
Germanium (Wavelength Dependence)	588
14. Available Experimental dn/dT of Germanium (Wavelength Dependence)	200
15. Available Experimental dn/dT of Germa-	589
nium (Temperature Dependence)	590
16. Variation of Refractive Index of Germa-	
nium with Temperature at Wavelength 3 µm [12]	591
17. Temperature Dependence of the Optical	091
Energy Gap of Germanium [16]	592
18. Recommended $n-\lambda-T$ Diagram of Germa-	F0.4
nium	594
manium	596
20. Recommended $dn/d\lambda$ Curve of Germanium	
at 293 K	598
List of Tables	
1. Recommended Values on the Refractive In-	
dex of Silicon	576
2. Recommended Values on the Temperature	
Derivative of Refrective Index of Silicon	570
Derivative of Refractive Index of Silicon 3. Calculated Values on the Wavelength De-	578
3. Calculated Values on the Wavelength Derivative of Refractive Index of Silicon at	578
3. Calculated Values on the Wavelength Derivative of Refractive Index of Silicon at 293 K	578 580
 3. Calculated Values on the Wavelength Derivative of Refractive Index of Silicon at 293 K. 4. Recommended Values on the Refractive In- 	580
 3. Calculated Values on the Wavelength Derivative of Refractive Index of Silicon at 293 K. 4. Recommended Values on the Refractive Index of Germanium 	•
 Calculated Values on the Wavelength Derivative of Refractive Index of Silicon at 293 K. Recommended Values on the Refractive Index of Germanium. 	580
 Calculated Values on the Wavelength Derivative of Refractive Index of Silicon at 293 K. Recommended Values on the Refractive Index of Germanium. Recommended Values on the Temperature Derivative of Refractive Index of Germanium. 	580
 Calculated Values on the Wavelength Derivative of Refractive Index of Silicon at 293 K. Recommended Values on the Refractive Index of Germanium. Recommended Values on the Temperature Derivative of Refractive Index of Germanium. Calculated Values on the Wavelength Derivative Values On the Wavelength On the Wavelength On the Values On the Wavelength On the Values On the V	580 593
 Calculated Values on the Wavelength Derivative of Refractive Index of Silicon at 293 K. Recommended Values on the Refractive Index of Germanium. Recommended Values on the Temperature Derivative of Refractive Index of Germanium. 	580 593
 Calculated Values on the Wavelength Derivative of Refractive Index of Silicon at 293 K. Recommended Values on the Refractive Index of Germanium. Recommended Values on the Temperature Derivative of Refractive Index of Germanium. Calculated Values on the Wavelength Derivative of Refractive Index of Germanium 	580 593 595

a	Adjustable constant; lattice constant
A, A_0, A_1, A_2	Adjustable constants
b	Adjustable constant
B	Adjustable constant
\boldsymbol{c}	Adjustable constant
C	Adjustable constant
D	Adjustable constant
E	Adjustable constant
$E_{\scriptscriptstyle \mathtt{F}}$	Energy gap
L_{293}	Length at 293 K
n	Refractive index
N	Complex refractive index; density of
	harmonic oscillator
T	Absolute temperature
V	Volume
Greek	
Symbols	
α	Linear thermal expansion coefficient
γ	Damping factor
€	Complex dielectric constant, value of dielectric constant
	dicieculic constant

Page	€1	Real part of e
	€2	Imaginary part of e
588	€0	Static dielectric constant
	€ ∞	High-frequency dielectric constant
589	κ	Extinction coefficient; oscillator strength
590	λ	Wavelength of light
	λ_i	Wavelength of the ith absorption band
	Δ	Change in a quantity
591	ν	Wavenumber
	ν_i	Resonant frequency; wavenumber of
592		the ith absorption band

1. Introduction

The refractive index of a material is one of its fundamental and useful optical properties. Accurate knowledge of the refractive index over a wide range of wavelength is indispensable for many applications. Although this property continues to receive attention for both industrial as well as purely scientific applications, the current state of the available data for certain widely used materials is less than adequate. While experimental results for the refractive index of pure silicon and germanium are reported by several groups of investigators claiming high internal accuracy and agreement, the data as a whole are in disagreement.

In this study, an attempt is made to consolidate all of the published refractive index data on silicon and germanium and to critically evaluate the raw experimental data and techniques of observation. A modified Sellmeier type dispersion relation is utilized to describe the available body of data. The resultant equations were used to generate the most probable values which agree with the selected experimental data to within $\pm 2.0 \times 10^{-3}$ over the wavelength range 1.2 to 14.0 μm for silicon and 1.9 to 18.0 μm for germanium.

2. Theoretical Background on Refractive Dispersion in Crystals

Dispersion relations are of fundamental importance to the description of the optical properties of materials. They relate both the absorptive and dispersive properties into one relatively concise statement describing a general linear relationship between fundamental amplitudes. The only two major restrictions are boundedness and causality, thus these relations are useful in many fields and applications in both physics and engineering.

The dispersion of radiation in an optical material is intimately related to the microscopic structure of the material itself. In the most general terms, long wavelength transmission of a pure crystal is limited by molecular vibrations, rotations while short wavelength transmission is limited by the electronic excitations of individual atoms. Practically, this implies that the fundamental transparent spectral range may be determined by knowledge of the absorption spectra of a

material. The energy necessary for electronic excitations is generally noted by the location of the energy gaps whicle the molecular excitation is represented by the fundamental phonon frequency. Experimentally, both of these parameters may be altered by various techniques including doping, stress, strain, and temperature variations. One other area of primary importance is that of point defects. The varied effects of point defects in semiconducting materials plays an important role in both the electrical and optical properties, however a detailed analysis of these effects is beyond the scope of this work. A more complete analysis of these effects is given by Crawford and Slifkin [1].

In general, the absorption and transmission of a material is not well known except for a small wavelength range. Thus, on theoretical grounds, it is convenient to consider dispersion as arising from two major sources separately; namely, the bound and free electrons. In non-conducting dielectric materials, the bound electron, or molecular, interactions tend to predominate, while free electron interactions are most common in metals. In semiconducting materials, both of these contributions may be important. In fact, most semiconductors show an optical absorption and an anomalous dispersion in the far-infrared region. This effect is rather small in covalent semiconductors like Si and Ge, it increases, however, with increasing polarity. Both the radio-frequency measurement and infrared observation indicate that the effect of free carriers on Si and Ge are negligibly small. Furthermore, in the elemental Si and Ge, the lattice has no permanent dipole moment and consequently the lattice absorption is small.

For pure dielectrics, the wavelength or frequency dependence of the optical constants may be described by the classical treatment of Lorentz. The theory assumes the solid to be composed of a series of independent oscillators, which are set into forced vibrations by the incident radiation. The Lorentz theory of absorption and dispersion for both insulating and semi-conducting materials leads to the two familiar relations,

$$n^{2} - \kappa^{2} = 1 + \sum_{i} \frac{N_{i}(\nu_{i}^{2} - \nu^{2})}{(\nu_{i}^{2} - \nu^{2})^{2} + \gamma_{i}^{2}\nu^{2}}$$
(1)

and

$$2n\kappa = \frac{1}{\nu} \sum_{i} \frac{N_{i} \gamma^{2} \nu^{2}}{(\nu_{i}^{2} - \nu^{2})^{2} + \gamma_{i}^{2} \nu^{2}}$$
(2)

where n is the refractive index, κ the absorption index, N_i the parameter associated with the oscillator strength of the *i*-th oscillator, ν_i the resonant frequency of the *i*-th oscillator and γ_i the damping constant of the *i*-th oscillator. In the transparent wavelength region, eq (1) can be reduced to a Sellmeier type equation by neglecting the line width of the oscillators, thus reducing to:

$$n^2 = 1 + \sum_i \frac{a_i \lambda^2}{\lambda^2 - \lambda_i^2} + \sum_j \frac{b_j \lambda^2}{\lambda^2 - \lambda_j^2}.$$
 (3)

Terms in the first summation are contributions from the ultraviolet absorption bands and those in the second from the infrared absorption bands. From eq (3), the dielectric constants, ϵ_{∞} and ϵ_{0} , of the material under consideration are defined as:

$$\epsilon_{\scriptscriptstyle \varpi} \! = \! 1 \! + \! \sum_{i} a_{i},$$
 and

$$\epsilon_0 = 1 + \sum_i a_i + \sum_i b_i$$

As noted before, the effects of free carries and lattice absorption are found to be negligibly small in elemental Si and Ge, thus the contributions from infrared absorption bands can be dropped and eqs (3) and (4) are simplified to:

$$n^2 = 1 + \sum_{i} \frac{a_i \lambda^2}{\lambda^2 - \lambda^2} \tag{5}$$

and

$$\epsilon = \epsilon_0 = \epsilon_{\infty} = 1 + \sum_i a_i. \tag{6}$$

In an ideal application of eq (5), one would need to know the wavelengths of all of the absorption peaks in the short wavelength region. This is very difficult in practice because of the large number of absorption peaks. In fact, only a few absorption peaks are accessible for experimental observation. It is also observed that among the absorption peaks, only the one that is located closest to the transparent region has noticeable effect on the refractive index in the transparent region. In order to simplify the calculations of the effect due to unobserved absorption bands and those other than the one affecting most the refractive index in the transparent region, the following considerations were taken. Each term, except the predominating one, in the summation of eq (5) is expanded as:

$$\frac{a_1\lambda^2}{\lambda^2 - \lambda_2^2} = a_1 \left(1 + \frac{\lambda_1^2}{\lambda^2} + \frac{\lambda_1^4}{\lambda^4} + \cdots \right) \tag{7}$$

Since λ_i 's are usually considerably smaller than λ 's in the transparent region, a good approximation of eq (5) is

$$n^{2} = 1 + \sum_{i=0}^{N} a_{i} \left(1 + \frac{\lambda_{i}^{2}}{\lambda^{2}} \right) + \frac{a_{1}\lambda^{2}}{\lambda^{2} - \lambda_{1}^{2}}$$
 (8)

01

$$n^{2} = 1 + \sum_{i} a_{i} + \frac{1}{\lambda^{2}} \sum_{i=2}^{N} a_{i} \lambda_{i}^{2} + \frac{a_{1} \lambda_{1}^{2}}{\lambda^{2} - \lambda_{1}^{2}},$$
 (9)

with a_1 and λ_1 associated with the term that has the greatest effect on the refractive index in the transparent region. Therefore, we have the simplified dispersion equation as:

$$n^2 = \epsilon + \frac{A}{\lambda^2} + \frac{B \lambda_1^2}{\lambda^2 - \lambda_1^2}, \tag{10}$$

where A and B are adjustable parameters, $\lambda_1 = 1.1071$ µm for Si and $\lambda_1 = 1.8703$ µm for Ge [2]. Equation (10) can be generalized to include temperature as an inpendent variable. In this case, the parameters ϵ , A, B, and λ_1 are functions of temperature.

At long wavelengths, the dielectric constant, ϵ , is equal to the square of refractive index, i.e., $\epsilon(T) = n^2(T)$ at long wavelength. Therefore,

$$\frac{1}{\epsilon(T)} \frac{d\epsilon(T)}{dT} = 2 \frac{1}{n(T)} \frac{dn(T)}{dT}.$$
 (11)

Cardona, Paul, and Brooks [3] found the longwavelength (1/n)(dn/dT) to be $(3.9 \pm 0.4) \times 10^{-5} \text{K}^{-1}$ for Si and $(6.9\pm0.4)\times10^{-5}\mathrm{K}^{-1}$ for Ge, between 77 and 400 K. Higher values of (1/n)(dn/T) were observed by other workers: $(4.8\pm0.2)\times10^{-5}K^{-1}$ for silicon [4] and $9.7 \times 10^{-5} \text{K}^{-1}$ for germanium [5]. However, these constant values of (1/n)(dn/dT) only hold at high temperatures. Deviation from linearity at low temperatures requires that a non-linear relation between ϵ and T be established. The values of the dielectric constant which appear in the literature are inaccurate. In the survey work of Young and Frederikse [6], the value for Si varies from 11.7 to 12.1 and that of Ge from 13.6 to 16.6. As a consequence, the reported values of ϵ are not suitable for eq (10) and $\epsilon(T)$ can only be obtained by fitting selected room-temperature refractive index data to eq (10). The temperature dependence of λ_1 was investigated by Macfarlane et al. [7, 8], their results are $d\lambda_1/dT = 0.000267 \ \mu \text{m} \ \text{K}^{-1}$ for Si and 0.001016 μm K⁻¹ for Ge at temperatures higher than 200 K. Non-linearity predominates at low temperatures.

The parameters, A and B, in eq (10) can be expressed in terms of temperature based on the considerations given below. Since

$$A = \sum_{i=2}^{N} a_i \lambda_i^2 \text{ and } B = a_1$$
 (12)

and the a's are respectively proportional to the density of the corresponding oscillator, the temperature dependence of a_t is given by the relation

$$\frac{1}{a_i}\frac{da_i}{dT} = -\frac{1}{V}\frac{dV}{dT} = -3\alpha, \tag{13}$$

where V and α are respectively the volume and the thermal expansion coefficient of the material. Hence

$$a_1 = a_{10} e^{-3 \int_{293}^{T} \alpha \, dT} = a_{10} e^{-3\Delta L(T)/L_{293}},$$
 (14)

with a_{0t} being the value of a_t at 293 K. Furthermore, each of the λ_t^{2} 's in the summation can be considered as a quadratic function of temperature because it is an experimentally observed fact that λ_t is approximately a linear function of T [9] in the temperature region of interest. Therefore

$$A(T) = e^{-3\Delta L(T)/L_{293}} (A_0 + A_1 T + A_2 \dot{A}^{2})$$
 (15)

and

$$B = B_0 e^{-3\Delta L(T)/L_{293}}, \tag{16}$$

where A_0 , A_1 , A_2 , and B_0 are adjustable deficients. Incorporating these considerations into equal to the latter can be written in the general form as

$$n^2 = f(\lambda, T). \tag{17}$$

In the actual cases, however, one finds negligibly small values for B_0 's through data fitting procedures. As a result, the following dispersion equation is adopted to calculate the refractive index of Si and Ge:

$$n^2(\lambda, T) = \epsilon(T) + \frac{A(T)}{\lambda^2}$$
 (18)

With ϵ and the parameters A_0 , A_1 , and A_2 appropriately determined, dn/dT and $dn/d\lambda$ can be easily calculated taking the first derivatives of eq (18) with respect to T and λ .

3. Presentation of Numerical Data

Reference data are generated here through pritical evaluation, analysis, and synthesis of the available experimental data. The procedure involves ritical evaluation of the validity and accuracy of the available data and information, resolution, and reconciliation of disagreements in cases of conflicting data, correlation of data in terms of various controlling parameters, curve fitting with theoretical or empirical equations, and comparisons of experimental values with predictions. No attempt was made to analyze the thinfilm data and the regions of strong absorption, because of the scantiness of reliable information. However, experimental data of thin films and absorption regions are also presented along with those of the transparent region in the tables reporting experimental data.

A number of figures and tables summarize the information and give data as a function of wavelength and temperature. The conventions used in this presentation, and specific comments concerning the interpretation and use of the data are given below. The subsections for Si and Ge give all the information and data for a given material and cover the following:

- a. A text discussing the data, analysis, and recommentations,
- b. A figure of experimental n values (for wavelength and temperature, respectively),
 - c. A figure of experimental $dn/dT = f(\lambda)$,
 - d. A figure of experimental dn/dT = f(T),
- e. A table of experimental data on $n=f(\lambda)$, given in Appendix,
- f. A table of experimental data on n=f(T), given in Appendix,
- g. A table of experimental data on $dn/dT = f(\lambda)$ given in Appendix,
- h. A table of experimental data on dn/dT = f(T) given in Appendix,

- i. Figures of recommended or provisional values of n, dn/dT, and $dn/d\lambda$,
- j. Tables of recommended or provisional values of n, dn/dT, and $dn/d\lambda$.

In figures containing experimental data, selected data sets are labeled by appropriate legends corresponding to those in the corresponding tables of experimental data given in Appendix, where specifications for individual data sets are also included.

There are a number of experimental methods used for the determination of refractive index, among which the following are those commonly used:

Deviation method (prism method)
Interference method
Transmission method
Reflection method
High frequency modulation method
Brewster angle method
Polarization method
Thickness determination method
Multilayer method

The methods listed above are arranged in the order of their inherent accuracy or popularity. The deviation method is the most popular means of determining the refractive indices, but the accuracy of the results depends on the conditions of the prism specimen. The highest accuracy that can be attained is in the fifth decimal place. The interference technique can be used to obtain data up to the fourth decimal place. Transmission and reflection methods yield results good to the second place, while the multilayer results are no better than two places. For a comprehensive, yet concise, review of all these methods, the reader is referred to references [10] and [11].

Dispersion equations for Si and Ge have been proposed in earlier works. Available relations are discussed in the text so as to facilitate comparison. Refractive indices for most of selected data sets are reported to the fourth decimal place. However, detailed compositions and characterizations of the specimens were usually not clearly given. Since impurities in the sample and conditions of the surface are decisive factors affecting the accuracy of the observed results, such highly precise data cannot be applied to a sample chosen at random. For this reason no attempt is made to recommend any particular set of data with the reported high accuracy, but to generate the most probable values for the pure crystals. As a result, the estimated uncertainties for the recommended values on the refractive index are higher than those for the reported data obtained even by highprecision measurements. The accuracy of the recommended refractive index values in this work is estimated to be 1 to 2×10^{-3} .

3.1. Silicon, Si

There are 55 sets of experimental data available for the refractive index (wavelength dependence and temperature dependence) of silicon as tabulated in tables A–1 and A–2 and plotted in figures I and 2. It should be pointed out that a few of the data sets are from observations for thin films and are reported here for purposes of comparison. After careful review and evaluation of the available information, it was found that data sets reported by Briggs [12], Salzberg and Villa [13], Cardona et al. [3], Lukes [4, 14], Primak [15], and Icenogle et al. [5] are representative for the refractive index of silicon in the transparent region between 1.3 and 12 μ m.

Briggs [12] probably was the first one who reported the measured refractive index of silicon. A 99.8% pure silicon wedge specimen of about 11.5° apex angle was investigated using minimum deviation method over a spectral range from 1.05 to 2.60 μ m. He stated that the accuracy of his measurements was good to the second decimal place.

Since this first measurement, a number of other investigations have been made. Refractive index determination from 1.35 to 11.04 μ m was made by Salzberg and Villa [13] for a wedge specimen of about 16° apex angle. The sample, of unknown purity, was obtained from the Texas Instrument Company. The autocollimation minimum deviation method was used to determine the refractive index. Their results were lower than those of Briggs by about 5 parts in the third decimal place. They claimed an accuracy of ± 2 parts in the fourth decimal place.

Cardona et al. [14] measured the refractive index of a thin silicon wedge of 5° in the wavelength range from 1 to 5 μ m and at temperatures 100, 194, and 297 K. Their results were about 4 parts in the third decimal place lower than the corresponding ones of Briggs.

Lukes [4, 14] measured the refractive index at five wavelengths, 1.259, 1.407, 1.564, 2.409, and 5.156 μ m, over a wide temperature region between 109 and 750 K by the conventional method of minimum deviation. The silicon wedge of \sim 18° angle was prepared from a p-type single crystal with a resistivity of \sim 380 ohm-cm. The reported error was $\pm \sim$ 0.0004, but his values of refractive index were systematically lower than those of Salzberg and Villa by 0.0015.

Primak [15] went to great lengths in the determination of the refractive index of silicon from 1.12 to 2.16 μ m. His results corresponded closely to those reported by Lukes. As he took into account all of the influencing factors in arriving at the final values, he believed that his values were reliable within an uncertainty of 1 or 2 parts in the third decimal place.

Icenogle et al. [15] made a thorough investigation on the refractive index for silicon over the temperature and wavelength ranges of 99-296 K and 2.554-10.27 μ m, respectively. The samples were obtained from the Exotic Materials, Inc. and were characterized as "good optical grade" without further details of purity of the material. The results are in fair agreement with other data sets. The claimed errors were $\pm 3 \times 10^{-4}$.

566 H. H. H. U

For the purpose of ease of comparison, the above mentioned data sets are replotted in figure 3. It is obvious that the disagreement among the values reported by different researchers is greater than the accuracy claimed by them. Although internal consistency was observed in each investigation, unaccounted sources of errors are responsible for these discrepancies.

Primak [15] devoted considerable space to the discussion of both systematic and random errors with the conclusion that the systematic errors played the key role in data discord. The possible sources of error were attributed to:

- i. Inadequate care in checking the pyramidal error. If the wedge angle was not perpendicular to the circle and parallel to the telescope, the effective angle would be greater than the true wedge angle with the consequence of a larger deviation angle which would lead to a larger value of refractive index.
- ii. Small wedge angle of the samples. For a highly refracting material such as silicon, a small wedge angle is required to measure the refractive index. As a result, large errors in angle measurement can be introduced and hence in the observed refractive index.
- iii. Broad detector used. Observation in the infrared requires a detector in the determination of deviation angle. The detectors that have been used are in general many times broader than the width of the spectral line, thus decreasing the accuracy in reading the angles. Significant errors are, therefore, inevitably introduced.
- iv. Optical inhomogeneity of the sample. Optical inhomogeneity of the material causes image distortion and thus the error in the angle setting.

Among the above sources, the smallness of the wedge angle is the major factor that contributes to the error. A combination of these contributions limits the accuracy of the measurement of the refractive index by the minimum deviation method to 1 or 2 units in the third decimal place, a few times higher than that claimed by most investigators.

The effect of impurities on the refractive index is considerable. In some cases, observations made on samples of questionable origin and undefined purity may yield radically different results. Villa [16] reported his grossly divergent values (shown in figure 3) to show that sample differences can be very significant. In figure 1 one can see Simon's [17] radically different results obtained for a silicon sample of high impurity content. The data of Spitzer et al. [18], obtained on heavily doped silicon, are significantly divergent from those of pure samples. Thus, when the effects of impurities are taken into consideration, discrepancies from pure samples may be much larger than 2 parts in the third decimal place.

Although the factors discussed above are well known, unfortunately they are generally not cited in literature, but must be deduced from the assigned accuracies. In the present work it is assumed that data sets that are discordant only in the third decimal

place are in reasonable agreement. This assumption can be supported by a careful comparison of the observations by Icenogle et al. [5] in which the values of the refractive index at a given wavelength and temperature, obtained from wavelength-dependence observation and from temperature-dependence observation, can be different in many cases by more than ! part in the third decimal, few times higher than the claimed precision of $\pm 3 \times 10^{-4}$.

More data can be found in references [19-30] and are given in tables A-1 and A-2, in which one can find also data sets obtained on thin films. No attempt was made to analyze the thin film data. However, it has been observed that the refractive indices of pure silicon thin films tend to agree with those of bulk crystal if the films are deposited on substrates maintained at elevated temperatures during deposition or appropriately annealed after deposition. Surface contamination appears to be the most serious problem. However, data for thin films reported by those who exercise appropriate precautions in the sample preparation are usually in agreement with those of bulk material.

literature data on the temperature coefficient of the refractive index is rather scarce. Data reported in tables A-3 and A-4 and plotted in figures 4 and 5 are those of Lukes [4, 14]. His values were evaluated from his measurements given in table A-2 and in figure 2.

A though a significant body of data on the refractive index of silicon is available, an attempt to analyze data has been rare. In the literature, only one quantitative study has been proposed. Hertzberger and Salzberg [31] proposed a dispersion equation for silicon which was derived in conjunction with 13 other materials. They noted that a comparison of the data from 14 materials indicated that all had refractive index values varying asymptotically with λ^2 . Furthermore, the mean asymptote was found to be at λ_0 = 0.168 um. The dispersion relation was based upon a Taylo: expansion in λ^2 which retains only the linear terms. The equation is

$$n = A + BL + CL^2 + D\lambda^2 + E\lambda^4, \tag{19}$$

where λ is in units of μ m, $L=1/(\lambda^2-\lambda_0^2)$, and the coefficients for silicon in the region 1.3 to 11.0 μ m are

$$A=3.41696, \qquad D=-0.0000209, \\ B=0.138497, \qquad E=0.000000148. \\ C=0.013924.$$

The determination of the coefficients in this equation was based on a single data set by Salzberg and Villa [13] and the fit is excellent.

In the present work, eq (10) is used to represent the refractive index for silicon. The main task was the selection of the appropriate parameters ϵ and λ_i , and the determination of the coefficients A and B. But the most important of all was the selection of reliable data sets used as input information to eq (10). The selected data were limited to the works of Salzberg and Villa, Primak, and Icenogle et al. Data from Cardona et al.

and Lukes were not used on the basis that their values had to be read off from the graphs in their reports. Deviations between the graph readings and the true values can occur in the second decimal place of the data. The data of Briggs were not chosen as his values disagree in the second decimal place with the corresponding values of Primak who exercised great care in the experiment for high purity silicon specimens. The remaining data sets from Primak, Salzberg and Villa, and Icenogle et al. constitute the basis of our recommendations. Their results are in agreement in the third decimal as expected. Fortunately, Icenogle's work covered a sizable temperature range, thus permitting the prediction of the refraction index at temperatures other than room temperature.

Selection of ϵ and λ_1 in eq (10) was rather difficult. Figure 6 shows the results of Cardona et al. [3] who observed the relative changes of refractive index, $\Delta n/n$, at a wavelength of 3 µm as temperature varied between 77 to 400 K. The average slope, (1/n)(dn/dT), of this curve is $(3.9 \pm 0.4) \times 10^{-5} \text{K}^{-1}$. Lukes [4, 14] obtained a higher value of $4.8\pm0.2\times10^{-5}\mathrm{K^{-1}}$ for (1/n)(dn/dT) by extrapolating his results to longer wavelengths. It appeared that at long wavelengths, ϵ in eq (10) could be determined from the relation $(1/\epsilon)(d\epsilon/dT) = (2/n)(dn/dT)$ using one of the above mentioned (1/n)(dn/dT) values. The result should be an exponential relation of the form $\epsilon = \epsilon_0 e^{\epsilon T}$. However, es the constancy of (1/n)(dn/dT) does not hold for the wide termperature range of our interest, an empirical relation between ϵ and T had to be found based on the experimental data on n.

It is shown in figure 2 that curves of temperature dependence of refractive index at various wavelengths are essentially parallel to each other and that each of them smoothly and monotonically increases with temperature. This provides the possibility to find relations between ϵ and T. Since ϵ is nearly equal to n^2 at long wavelengths, the best choice in the present case seemed to be the refractive indices at 10.27 µm by Icenogle et al. [5]. As the available data of n(T) at 10.27 µm cover only the limited temperature range from 100 to 298 K, a wider temperature range coverage is needed to establish the relation between e and T that is valid over the temperature range 100-750 K. As shown in figure 2, the 5.156 µm curve by Lukes [14] is slightly above, but parallel to, the extension made from the 10.17 μ m curve. The required 10.27 μ m data in the high temperature region can be estimated by an appropriate extrapolation of Icenogle's data within that region. In this way, the following polynomial expression is found to be valid at 10.27 µm ond aver 100-750 K temperature range,

$$n^{2}(10.27 \ \mu m, T) = 11.4552 + 2.7765 \times 10^{-4}T + 1.7066 \times 10^{-6}T^{2} - 8.1423 \times 10^{-10}T^{3}.$$
 (20)

Since at long wavelengths the dielectric constant closely approaches n^2 , it is acceptable to consider the

above quantity as a proportional factor and thus express the dielectric constant by the relation

$$\epsilon(T) = En^2(10.27\mu m, T),$$
 (21)

where E is the proportional constant.

The spectral positions of resonant absorption peaks have been observed by a number of investigators. Moss [32] made an attempt to calculate the refractive indices in the transparent region from the absorption data based on the general principle of oscillatory system. The spectral position of the natural frequency in his single oscillator model was determined at 3.4 eV or $\lambda = 0.365 \ \mu m$. McLean [2] investigated the absorption edge spectrum of silicon and found the optical energy gap at 300 K to be $E_g=1.12$ eV or $\lambda_1=1.1071$ μm . Macfarlane et al. [7] further studied the absorption edge spectrum and found that the temperature variation of the optical energy gap is essentially linear in the temperature region 250-480 K, but nonlinearity progressively predominates at lower temperatures, as seen from figure 7. Lukes and Schmidt [9] studied the reflectivity spectrum of silicon and found two additional absorption peaks at about 0.36 and 0.27 μ m. The first one is in line with the Moss' [32] result, while the second corresponds to the prediction of Yu and Cardona [33]. A summary of these findings results in three absorption peaks; namely: $\lambda_1 = 1.1071 \mu m$, $\lambda_2 = 0.365 \mu m$, and $\lambda_8 = 0.27 \mu m$, that supposedly have significant effects on the refractive index in the transparent region from 1.2 to 14 μ m.

An attempt was made to fit the selected data to an equation similar to eq (10) by including extra terms due to λ_2 and λ_3 . It was found, however, that the introduction of the λ_2 aand λ_3 terms did not improve the agreement obtained when only the λ_1 term was included. Furthermore, the coefficients of the λ_2 and λ_3 terms could not be uniquely defined because there were no reliable data in the regions bounded by and near the three peak wavelengths. Also, the value of B was found to be negligibly small, thus making the contribution of the last term in eq (10) insignificant. As a consequence, eq (18) was adopted and the least squares fitting of selected data to this equation yielded the following expression for the refractive index of silicon in the ranges 1.2 to 14 μ m and 100-750 K:

$$n^{2}(\lambda, T) = \epsilon(T) + \frac{L(T)}{\lambda^{2}} (A_{0} + A, T + A_{2}T^{2}),$$
 (22)

where

$$\epsilon(T) = 11.4445 + 2.7739 \times 10^{-4} T + 1.7050 \times 10^{-6} T^2 - 8.1347 \times 10^{-10} T^3,$$
 $L(T) = e^{-3\Delta L \cdot T^2} / L_{293},$
 $\lambda = \text{wavelength in units of } \mu \text{m},$
 $T = \text{temperature in units of } K,$
 $A_0 = 0.8948,$
 $A_1 = 4.3977 \times 10^{-4},$
 $A_2 = 7.3835 \times 10^{-8},$

568 H. H. LI

and from reference [34]

$$\frac{\Delta L\left(T\right)}{L_{\rm 298}} = -0.021 - 4.149 \times 10^{-7} T - 4.620 \\ \times 10^{-10} \, T^{\rm 2} + 1.482 \times 10^{-11} \, T^{\rm 2} \quad (20 - 293 \, {\rm K}),$$

$$\begin{split} \frac{\Delta L(T)}{L_{\text{293}}} &= -0.071 + 1.887 \times 10^{-6} T + 1.934 \\ &\times 10^{-9} T^2 - 4.544 \times 10^{-13} T^3 \quad (293 - 1600 \text{ K}). \end{split}$$

It should be pointed out that the room-temperature dielectric constant for silicon can be calculated from the expression for ϵ in eq (22). The result is 11.66 which agrees well with the commonly accepted value of 11.7.

Equation (22) was used to calculate the recommended values of the refractive index of silicon with uncertainties of $\pm 2\times 10^{-3}$. The recommended values are given in table 1 and plotted in figure 8. To provide visual comparison of calculated values with the experimental data, calculated values at a few specified temperatures and wavelengths are plotted in figures 2 and 3 where excellent agreement is revealed. Tables 2 and 3, respectively, give the calculated dn/dT and $dn/d\lambda$ values based on the first derivatives of eq (22) with respect to T and λ . The corresponding plots are shown in figures 9 and 10.

Uncertainties in the calculated dn/dT are estimated based on Icenogle's [5] results which were the essential data on which eq (22) is based. Icenogle et al. evaluated $\Delta n/\Delta T$ values using their own measurements of n and found the average accuracy in $\Delta n/\Delta T$ to be about $\pm 0.15 \times 10^{-4} \, \mathrm{K}^{-1}$. Error bars corresponding to this amount are drawn on the calculated curves in figures 4 and 5 where calculations are compared with the experimental data. Although accuracies of experi-

mental dn/dT are not given in Lukes' work [4, 14], it is reasonable to adopt the ame experimental error bar since the n versus T curves in figure 2 are closely parallel.

Uncertainties of the calculated $dn/d\lambda$ are estimated in the following manner. Taking the first derivative of eq (22) with respect to λ , where

$$-dn/d\lambda = (1/n)A(T)/\lambda^{3} = (1/n\lambda)(n^{2} - \epsilon), \qquad (23)$$

which leads to

$$\delta(dn/d\lambda) \simeq \frac{1}{2} 2\delta n/\lambda.$$
 (24)

Based on the fact that the spectral dependence of the refractive index from various investigators are essentially parallel, it should be permissible to apply the uncertainties, $\delta n = \pm 3 \times 10^{-4}$, quoted in Icenogle's work to evaluate $\delta(dn/d\lambda)$ using the above relation for the wavelength region between 2.55 and 14 μ m. For wavelengths <2.55 μ m, the uncertainty $\delta n = \pm 2 \times 10^{-3}$ of eq (22) should be used. Under these conditions, uncertainties of $dn/d\lambda$ are about $\pm \frac{10}{2} \times 10^{-4} \mu$ m⁻¹ at 2 μ m, $\pm 2.4 \times 10^{-4} \mu$ m⁻¹ at 2.55 μ m, $\pm 0.6 \times 10^{-4} \mu$ m⁻¹ at $\pm 0.44 \times$

It should be noted that calculated values in tables 1, 2, and 3 are given with more digits than warranted merely for the purpose of tabular smoothness. As these values are calculated from an equation, it is highly desirable to give enough digits to show the variation of the variables in the equation and to provide comparison among neighboring entries. These extra digits which are insignificant and not in dicative of the accuracy of the values are indicated with an overstrike. Appropriate uncertainties in the recommended values discussed in the text are quoted in the footnotes of the tables.

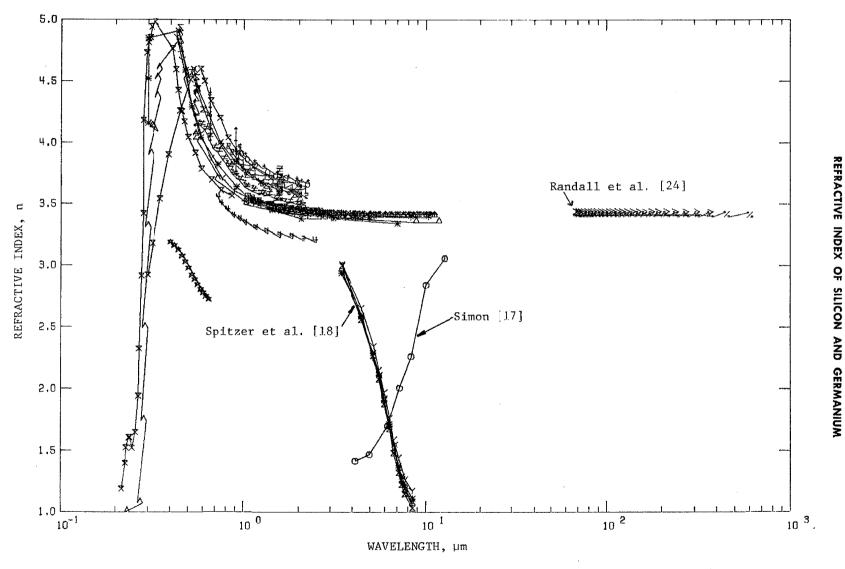


FIGURE 1. AVAILABLE EXPERIMENTAL REFRACTIVE INDEX OF SILICON (Wavelength Dependence)

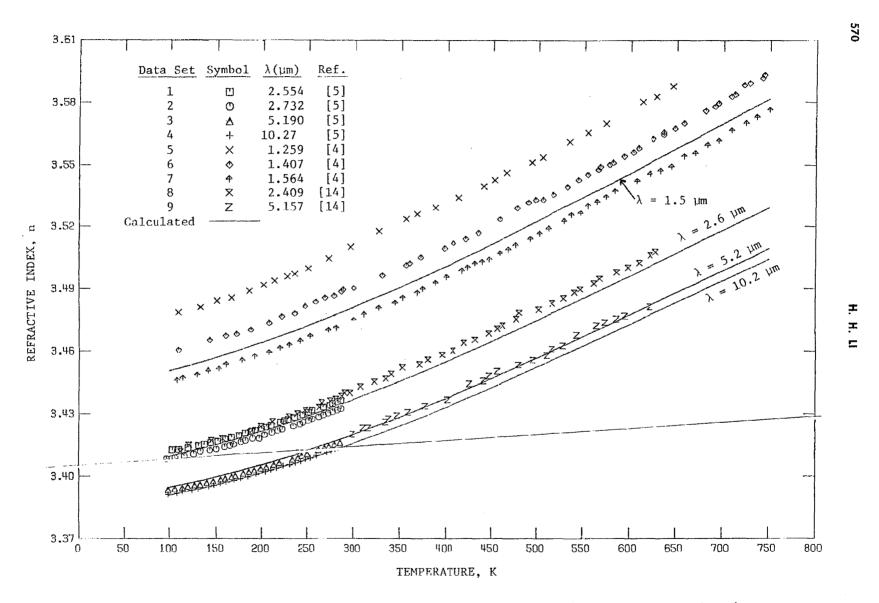


FIGURE 2. AVAILABLE EXPERIMENTAL REFRACTIVE INDEX OF SILICON (Temperature Dependence)

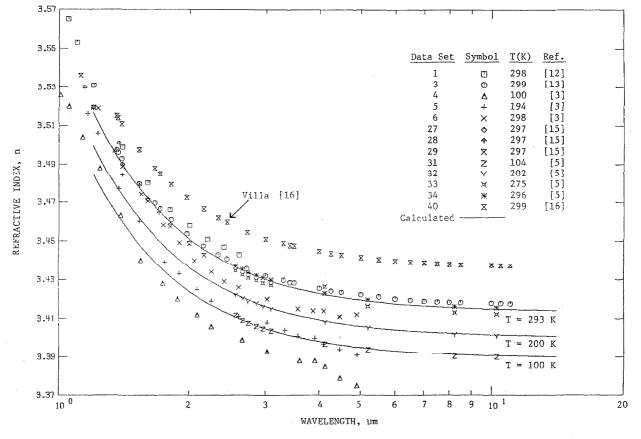


FIGURE 3. SELECTED EXPERIMENTAL REFRACTIVE INDEX OF SILICON (Wavelength Dependence)

FIGURE 4. AVAILABLE EXPERIMENTAL dn/dT OF SILICON (Wavelength Dependence)

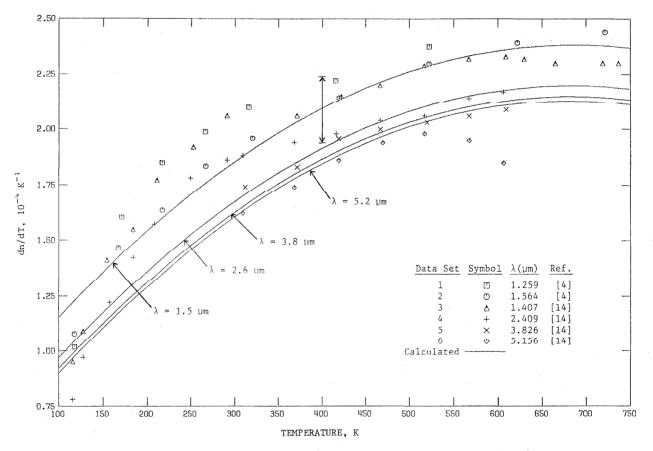


FIGURE 5. AVAILABLE EXPERIMENTAL dn/dT OF SILICON (Temperature Dependence)

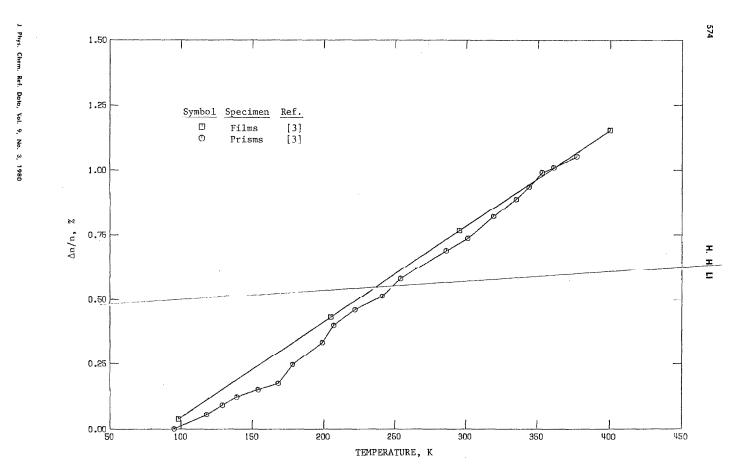


FIGURE 6. VARIATION OF REFRACTIVE INDEX OF SILICON WITH TEMPERATURE AT WAVELENGTH 3 μm [3]

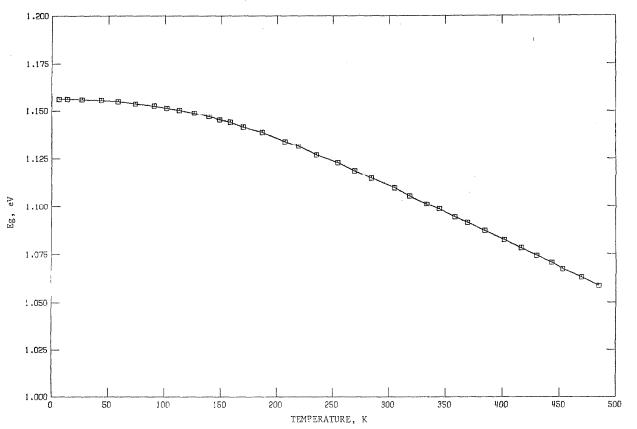


FIGURE 7. TEMPERATURE DEPENDENCE OF THE OPTICAL ENERGY GAP OF SILICON [7]

TABLE 1. RECOMMENDED VALUES ON THE REFRACTIVE INDEX OF SILICON*

1							TEMPER	ATURE, K						
λ,μm	100	150	200	250	293	350	400	450	500	550	800	650	700	750
1.20 1.22 1.24 1.28 1.30 1.32 1.34 1.35 1.40 1.45 1.55	3.48141917.11618181619181617 3.473618181619181617 3.474618181617 3.4759481818181818181818181818181818181818181	3.4441619939191919191919191919191919191919191	3.49933416601116663551 3.49933416601116663551 3.486487765555 3.47788477 3.4778847 3.4778847 3.4778847 3.4778847 3.4778847 3.4778847 3.4778847 3.4778847 3.4778847 3.4778847	350 8511011010101010101010101010101010101010	3.51673320233 3.51073360233 3.550743603 3.550743603 3.540963 3.494413663 3.49457 3.4757	350 850 855 355 355 355 355 355 355 355 355 355	3.55.50.00 3.55.	3.55443977 (88) 554430 (88) 554430 (88) 55328 (88) 5522	355555443333333375755555555555544408575555248555552445555555555245555555555	3.5711894191814181914 3.5711894191814181914 3.555555555555555555555555555555555555	3.58806755446699911033 3.558305770446699911033	3.598981 3.598981 3.598981 3.588587 3.588587 5.5741 3.56831 3.56631 3.56631 3.56786	3.600516101010111111111111111111111111111	3.621366 3.6213667 3.61760 3.61760 3.61760 3.61760 3.61760 3.61760 3.61760 3.61760 3.61760 3.55931 3.55931 3.55931 3.5593 3.5593 3.579
1.60 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.7	3.4470 3.4471 3.4371 3.4270 3.4270 3.4270 3.4168 3.4078 3.4081 3.3980 3.3981 3.3981 3.3998 3.3998 3.3998 3.3998 3.3998	2.4451 2.4451 2.4452 3.4434 3.4237 3.4237 3.4101 3.4101 3.4101 3.4101 3.3958 3.3958 3.3958 3.3958 3.3958 3.3958 3.3958	3.4554 3.4551 3.4501 3.4401 3.4402 3.4402 3.4063 3.4153 3.4153 3.4163 3.4063 3.4063 3.4062 3.4062 3.4062 3.4063 3.4062 3.4063 3.4062 3.4063 3.	3.4644 3.4610 3.4678 3.4478 3.	3.47[3] 46859[- 3.48550] 3.4550 3.4550 3.4550 3.4550 3.450 3.4334 4.165 3.41	3.4826 3.4758 3.4758 3.4653 3.4653 3.4653 3.4653 3.4653 3.4250	3. 4826 3. 4857 3. 4857 3. 4750 3. 4750 3. 4750 3. 4524 3. 4350 3. 4341 3. 4341 3. 4341 3. 4336 3. 4328 3. 4328 3. 4328 3. 4328	3.509 <u>1</u> 53.495 <u>1</u> 1.495 <u>1</u> 3.495 <u>1</u> 3.495 <u>1</u> 3.495 <u>1</u> 3.485 <u>2</u> 93.485 <u>2</u> 93.485 <u>2</u> 3.485 <u>2</u> 3.485 <u>2</u> 3.445 <u>1</u> 3.444 <u>13.444</u> 3.4443.4443.4443.4443.4443.4443.4	3.51424 3.5170 3.5170 3.4958 3.4958 3.4958 3.4724 3.4658 3.4573 3.4573 3.4524 3.4524 3.4524 3.4524 3.4524 3.4523 3.4524 3.4524 3.4523	3.52181 5.5	3.5370 3.5395 3.5295 3.5295 3.5180 3.5180 3.5180 3.490 3.490 3.4787 3.4783 3.4783 3.4783 3.4783 3.4783 3.4783 3.4783 3.4783 3.4783 3.4783 3.4783 3.4783 3.4783	3.5447-1-1-5447-	3.5604 3.5567 3.5567 3.5569 3.5407 3.5369 3.5369 3.5154 3.5269 3.5154	3.55663714366314465557355557473565374465557735557547557547557557555755755755755755755

^{*} THE ESTIMATED UNCERTAINTY IN THE RECOMMENDED VALUES IS ±2X10*. RELOMMENDED VALUES ARE GIVEN TO MORE DIGITS THAN WARRANTED MERELY FOR THE PURPOSE OF TABULAR SMOOTHNESS. THE INSIGNIFICANT DIGITS OF THE VALUES ARE INDICATED BY OVERSTRIKES.

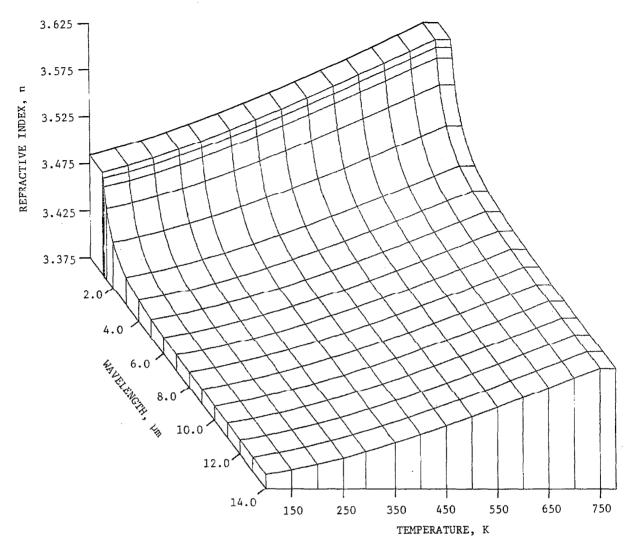


FIGURE 8. RECOMMENDED $n-\lambda-T$ DIAGRAM OF SILICON

TABLE 2. RECOMMENDED VALUES ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF SILICON*

1		TEMPERATURE, K												
λ, μπ	100	150	500	250	293	350	400	450	500	550	600	650	700	750
2024468024450224112802241133681113565000000000000000000000000000000000	1.3829161513131212131516161517161716171617161716171617161716	1.59999911.44399911.1.443999911.1.4439999911.1.4439999911.1.4439999911.1.4439999911.1.4439999911.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1.667966742110000011122150015001000011122150015001	1.884419715 1.884919715 1.8859915 1.785591 1.7755 1.775991 1.7659199174 1.558974 1.5	1.98707/1941391208911.1.98707/1941391208911.1.99707/1941391208911.1.99707/1941391208911.1.99707/1951209911.1	1919\4 51\4 51\4 51\4 51\4 51\4 51\4 51\4 51	14.69(a)(5)4(3)(a)(a)(b)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)		1.188670111616147131616114411817151818171518191715181917151819171518181415181817151819171518181415181817151818171518181715181817151818171518181715181817151818171518181715181817151818171518181817151818181715181818171518181817151818181715181818171518181818	189946990599999999999999999999999999999999	ច្រាវត្តាទៅកម្រាវម្ចាក់ម្រាក់ក្រាវក្សាក្រាវក្សាវក្សាវក្សាវក្សាវក្សាវក្សាវក្សាវក្ស	គ្រាញ់ប្រាក្សា ក្នុងក្រុងប្រាក្សមក្រាញ់គ្រាញ់ប្រាក្សប្រាក្សប្រាក្សប្រាក្សប្រាក្សប្រាក្សប្រាក្សប្រាក្សប្រាក្សប ច្រាក្សប្រាក្សា ក្នុង មុខ		[ស្លាញម៉ូងក្រុងស្លាញមានគ្រាស់ស្រាម្លាស់ស្រាម្លាស់ស្រាមក្រុងស្លាស់ស្លាស់ស្លាស់ស្លាស់ស្លាស់ស្លាស់ស្លាស់ស្លាស់ស្លា ច្រើន 444 ។ ។ ។ ។ បានប្រជាពល់បានបានបានបានបានបានបានបានបានបានបានបានបានប

^{*}THE ESTIMATED UNCERTAINTY IN THE RECOMMENDED VALUES IS ±0.15X104 K4. RECOMMENDED VALUES ARE GIVEN TO MORE DIGITS THAN WARRANTED MERELY FOR THE PURPOSE OF TABULAR SMOOTHNESS. THE INSIGNIFICANT DIGITS OF THE VALUES ARE INDICATED BY OVERSTRIKES.

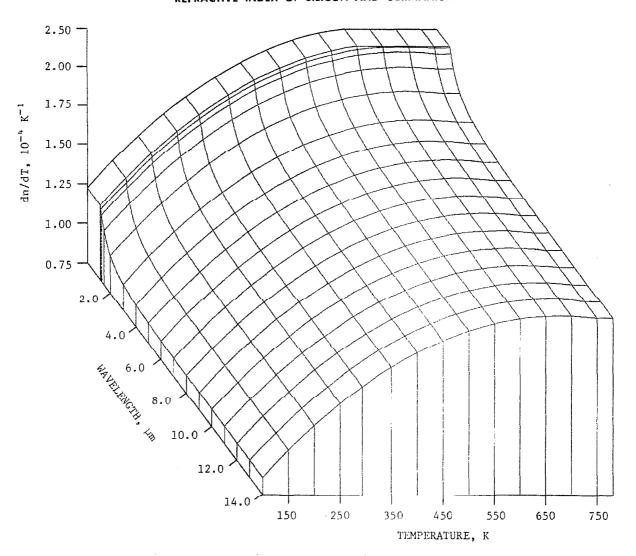


FIGURE 9. RECOMMENDED $d_{\rm D}/dT - \lambda - T$ DIAGRAM OF SILICON

ABLE 3. CALCULATED VALUES ON THE WAVELENGTH DERIVATIVE OF REFRACTIVE INDEX OF SILICON AT 293K*

λ, μπ	-dn/dλ, 10 ⁻⁴ μm ⁻¹
λ, μm 1.20 1.24 1.24 1.28 1.30 1.31 1.35 1.35 1.40 1.45 1.55 1.605 1.55 1.605 1.70 1.800 2.250 2.75 3.000 6.000 7.000 8.000 10.000 11.000	-dn/d\(\lambda\), 10 4 \(\mu\)m 1 1594.5 1514.0 1538.6 1467.7 1401.1 1338.5 1224.0 1171.6 1122.1 1075.4 969.38 876.88 794.1 560.99 604.8 510.95 604.8 510.95 144.2 111.0 24.1 13.8 5.9 47.0 24.1 13.8 5.9 47.0 24.1 13.8 5.9 41.3 3.0 2.3 3.1 3.0 2.3 3.1
13.00 14.00	1.4 1.1

^{*}RECOMMENDED VALUES ARE GIVEN TO MORE DIGITS THAN WARRANTED MERELY FOR THE PURPOSE OF TABULAR SMOOTHNESS. THE INSIGNIFICANT DIGITS OF THE VALUES ARE INDICATED BY OVERSTRIKES. THE ESTIMATED UNCERTAINTIES IN THE RECOMMENDED VALUES ARE ABOUT ±20X104 MM- AT 2 MM ±2.4X104 MM- AT 2.55 MM, ±0.5X104 MM- AT 10 MM, AND ±0.44X104 MM- AT 14 MM.

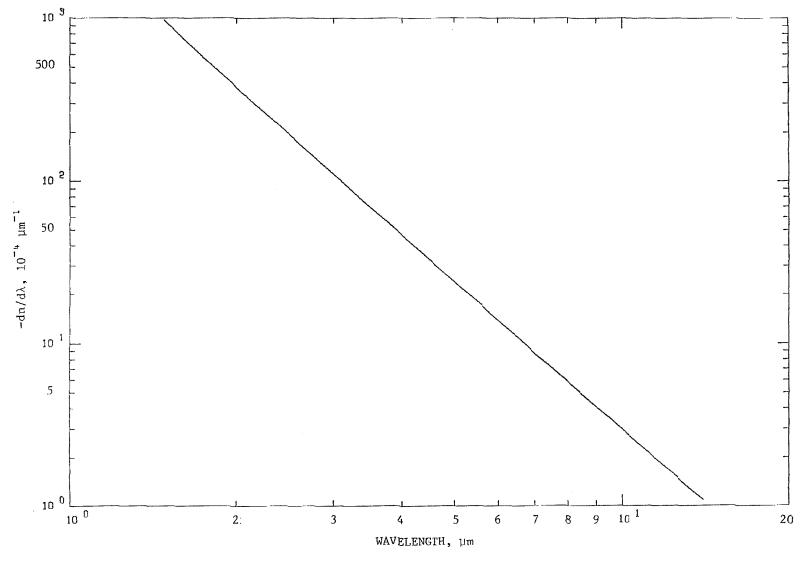


FIGURE 10. RECOMMENDED $dn/d\lambda$ CURVE OF SILICON AT 293 K

3.2. Germanium, Ge

There are 88 sets of experimental data available for the refractive index (wavelength and temperature dependences) of germanium as given in tables A-5 and A-6 and plotted in figures 11 and 12. A few sets of measurements on thin films are included for the purpose of complet mess and comparision. After careful review and evaluation of the available information, it was found that the data reported by Brigge [12], Salzberg and Villa [13], Cardona et al. [3], Rank et al. [35], Lukes [36, 37], Icenogle et al. [5], and Edwin et al. [38] are representatives for the refractive index of germanium in the transparent region between 1.8 and 16 µm.

Briggs [12] measured the refractive index of a germanium specimen of 99.99% purity over the spectral region between 1.8 and 2.6 µm. He used the minimum deviation method on a wedge of about 17° apex angle. The range of his measurements was limited on the short wavelength side by absorption in the prism, and on the long wavelength side by absorption in the glass components of the optical system used. The claimed error was a few parts in the third decimal place. He also observed a definite increase in refractive index value with increasing temperature. In other words, the temperature coefficient of refractive index of germanium is positive.

Since Briggs' observation, several other independent measurements were carried out. Salzberg and Villa [13] used the autocollination minimum deviation method in the determination of n over a wide wavelength range from 2.0 to 16 μ m for a single crystal germanium priem of 11.8 apex angle with unknown purity. The reported accuracy was estimated to be ± 2 parts in the fourth decimal. Compared with the results of Briggs, their n values are systematically about 0.005 lower in the corresponding spectral region. No source was ascribed for such discrepancies. In a later work [39], a polycrystalline sample was measured and they found that there were no significant differences between the results obtained for different crystals.

Cardona et al. [3] measured the refractive index for a thin germanium wedge of 5° in the wavelength range from 1.7 to 5.6 µm and at temperatures 87. 190, and 297 K. Their n values were also about 0.005 lower than those of Briggs in the corresponding wavelength region. Their results clearly indicate that dn/dt of germanium is positive over the transparent wavelength region. At a fixed long wavelength, 3 μ m, they measured the relative changes of n, $\Delta n/n$, as a function of temperature. A linear relation between $\Delta n/n$ and T was observed over the temperature range between 77 and 400 K. The result, (1/n)(dn/dT) $=(6.9\pm0.4)\times10^{-5}\mathrm{K}^{-1}$, agrees well with those for the dielectric constant measurement at 10 mc/s [40] at low temperatures, but discrepancies occurred at high temperatures where values obtained in reference [40] are higher. Such discrepancies were attributed to the inhomogeneities and impurities in the samples which effectively reduced the thickness of the capacitors and thus resulted in an apparent increase in the dielectric constant.

Rank et al. [35] measured the refractive index over a wavelength region between 2.0 and 2.4 μ m by an interferometric method. A single crystal germanium of unspecified purity was used and the resulting n's were about 0.01 higher than the corresponding values of Briggs. The temperature variation of the refractive index was observed to have a positive coefficient and the absorption edge moved to longer wavelengths as temperature increased.

Lukes [36, 37] measured the refractive index for several germanium prism samples cut from single crystals of varying impurity. His measurements were carried out over a wavelength range of 1.8–5.5 μ m and the temperature range 100–530 K. The results obtained for the purest sample were in agreement with those of Salzberg and Villa, while the results for the impure samples showed discrepancies at the long wavelengthe, the higher the impurity, the lower the n. In the shorter wavelength region, $<4~\mu$ m, the refractive index appeared practically independent on the impurity content.

Icenogle et al. [5] made a thorough investigation on the refractive index for germanium over the 95–297 K and 2.554–12.360 μ m regions. The samples were obtained from the Exotic Material, Inc. and were characterized as "good optical grade" without further details of purity of the material. The claimed error in the measurement of n was $+6\times10^{-4}$. The results disagree with those of other workers by several parts in the third decimal. At room temperature and in the wavelength region where $\lambda>3~\mu$ m, Icenogle's values are higher than the earlier works. The sources for such discrepancies can possibly be ascribed to differences in the impurity content of the samples.

Edwin et al. [38] made careful measurements of n for well characterized germanium specimens in the spectral region 8-14 μ m. Their results are in agreement with Icenogle's values when account is taken of both of their claimed uncertainties. Edwin et al. took into account the main sources of uncertainty in arriving at their reported values, including probable errors from temperature readings, angle determinations, wavelength identification, curvature of slit image, and random errors. The claimed uncertainty of their results is ± 0.0003 . According to their sample description, the specimens had a resistivity about 45 to 53 ohm-cm which indicated that they used purer samples than others.

For ease of comparison, the above mentioned data sets are replotted on an enlarged scale in figure 13. It is obvious that the disagreement among the data sets is greater than the individually claimed accuracies.

True internal consistency was observed in each measurement, unaccounted sources or errors were responsible for the discrepancies.

Primak [15] devoted considerable space to discussions of both systematic and random errors for the case of silicon (see subsection 3.1). The conclusions are generally valid for other materials. Among the possible sources, the smallness of the prism angle is the major factor that contributes to the error. Combined with the errors from other sources, the limit of accuracy in the measurement of n by the minimum deviation method is 1 to 2 parts in the third decimal place, a few times higher than that claimed by many workers.

The effect of impurities on the refractive index is considerable. In some cases, observations made on samples of questionable origin and undefined purity may yield radically different results. Simon [17] reported his radically different results (shown in figure 11) obtained for a germanium sample of high impurity content. Spitzer et al. [44] investigated the optical constants of heavily doped germanium with results greatly different from those of pure samples shown in figure 11. Thus, when the effects of impurities are taken into consideration, discrepancies from pure samples may be much higher than 2 parts in the third decimal place.

Although the error causing factors given above are well known, unfortunately they are not generally given in the literature and authors advance independent claims of their own precisions. In the present work it is assumed that data sets are concordant if they are not identical in the third decimal place.

More data can be found in references [41–58] and are given in tables A-5 and A-6, in which one can also find data sets obtained for thin films. No attempt was made to analyze the thin film data. However, it has been observed that the refractive indices of pure germanium thin films tend to agree with those of bulk crystal if the films are deposited on substrates maintained at elevated temperatures during the course of deposition or appropriately annealed after deposition. Surface contamination appears to be the most serious problem. However, data for thin films reported by those who exercised precaution in sample preparation are usually in agreement with those for bulk material.

Literature data on the temperature derivative of the refractive index of germanium is rather scarce. The data tabulated in tables A-7 and A-8 and plotted in figures 14 and 15 are mainly those of Lukes [36, 58, 59]. His dn/dT values were evaluated from his measurements of n given in table A-6 and figure 12.

Although considerable amounts of experimental data on the refractive index of germanium are available, they have received little analysis. The earliest quantitative results for germanium are generally attributed to Brattain and Briggs [41]. While they presented no dispersion relations in their work, they

noted that their results were extremely sensitive to specimen preparation and that large discrepancies arose between samples.

The first qualitative attempt was made by Rank et al. [35], who fitted a Cauchy type dispersion relation of the form

$$n = n_0 + \frac{a}{\lambda^2} + \frac{b}{\lambda^4},\tag{25}$$

where λ is in units of μm . They presented results for fits on both their own data and for the Brattain and Briggs data with the following constants:

Data	$n_{\scriptscriptstyle 1}$	$a, \mu\mathrm{m}^2$	$b, \mu \mathrm{m}^2$
$RB\overline{C}$ [43]	4. $0\overline{3}85$	0.21345	$\overline{0.5363}$
BB [49]	3. 9992	0.44647	0.6882

While this relation represented well each of the data sets, the authors found discrepancy between the two data sets as indicated by the coefficients.

The next dispersion relation was advanced by Hertzberger and Salzberg [31] which they developed using data for 13 materials in addition to germanium. They noted that comparisons of the data for 14 different materials indicated that all had refractive indices varying asymptotically with λ^2 . They found the mean asymptote of all the materials in the UV region to be at $\lambda_0 = 0.168~\mu m$. Their dispersion relation is based upon a Taylor expansion in λ^2 which retains only the linear terms. The form is

$$n = A + BL + CL^2 + D\lambda^2 + E\lambda^4, \tag{26}$$

where λ is in units of μm , $L \approx 1/(\lambda^2 - \lambda_0^2)$, and the coefficients for the region 2.0 to 13.5 μm are:

$$\begin{array}{ll} A\!=\!3.99931, & D\!=\!-0.0000060, \\ B\!=\!0.391707, & E\!=\!-0.000000053. \\ C\!=\!0.163492, & \end{array}$$

These results agree very well with the data from which they are derived.

In the present work, eq (10) was used to represent the refractive index of germanium. The main task was the selection of the reliable data sets, the appropriate parameters ϵ and λ_1 , and the determination of the coefficients A and B. The data reported by Cardona et al. and Lukes were not used on the grounds that their values in our collection were read from the graphs in their papers. We have found that deviations between the graph readings and the true values were quite large, estimated at 1 to 2 percent. Values reported by Rank et al. (after correcting from vacuum values to air values) appear to be relatively too high compared with those of Briggs and Salzberg and Villa in the corresponding wavelength region, 2.0–2.4 μ m.

Although germanium has long been an important infrared material, its refractive index in the long wavelength region has not been well defined. Results from different workers often differ by as much as 0.003.

584 H. H. Li

Such a large discrepancy cannot be accounted for by merely experimental errors. Unknown impurities in some of the samples are probably responsible for the differences. However, this very important information is generally missing from the papers. As a result, the current knowledge of the refractive index of germanium still remains uncertain. Results of Edwin et al. [38] and Icenogle et al. [5] are uniformly higher than those of Salzberg and Villa [13] in the long wavelength region. Spitzer and I'an [44] observed that the refractive index of an impure sample in the long wavelength region is lower than that of a purer specimen. According to this, it would seem that Salzberg and Villa had more impurities in their specimen than did Edwin and Icenogle. This is not the case, however, as the above mentioned dala sets are essentially parallel in the long wavelength rigion while Spitzer and Fan's results indicate a progressively decreasing n with increasing wavelength (see figures 1 and 11). Based on this consideration, the selected data sets were given equal weight. Fortunately, data by Icenogle et al. cover a sizable tempere ture range, permitting the prediction of n at temperatures other than room temperature.

Selection of \vdots and λ_1 presented some difficulties. Cardona et al. [3] observed the relative changes of refractive index $\Delta n/n$, at a wavelength of 3 μ m as temperature varied from 77 to 400 K with results plotted in figure 16. The average slope, (1/n)(dn/dT)of this plot is $(6.9\pm0.4)\times10^{-5}$ K⁻¹. Icenogle et al. obtained a higher value of $9.9 \times 10^{-5} \text{K}^{-1}$ for (1/n)(dn/dT) in the varelength range 2.554 to 12.1 μ m. It appeared that din eq (10) could be determined from the relation $(1/\epsilon)(d/\epsilon/dT) = (2/n)(dn/dT)$ using the value of (1/n)(dn/dT) at long wavelengths. The result would be an exponential relation of the form $\epsilon = \epsilon_0 e^{\epsilon T}$. However, the constant of (1/n)(dn/dT) does not hold for a wide temperature range. Hence, an empirical relation between ϵ and T should be found based on available data of n.

It is shown in figure 12 that curves of temperature dependence of refractive index at various wavelengths are essentially parallel to each other and that each of them smoothly and monotonically increases with temperature. This provides a possibility to find a relation between ϵ and T. As ϵ closely equals n^2 at long wavelengths, the best choice in the present case is the refractive indices at $10.27 \mu m$ by Icenogle et al. [5]. However, their results cover only a temperature range from 100 to 298 K. A wider temperature coverage is required to establish it relation between ϵ and T that is reliable over the temperature region 100-550 K of general interest. As shown in figure 12, the 5.156 µm curve of Lukes [36] is slightly above and parallel to the extension made from the 10.27 µm curve. The needed refractive indices at 10.27 µm in the higher temperature region was therefore obtained by appropriate extrapolation of "cenogle's data in that region.

In this way, the following polynomial equation is found to be valid at 10.27 μ m and over 100-550 K:

$$n^2(10.27 \ \mu\text{m}, T) = 15.3122 + 1.4571 \times 10^{-3}T + 3.5131 \times 10^{-6}T^2 - 1.2089 \times 10^{-9}T^3.$$
 (27)

Since at long wavelengths the dielectric constant closely approaches but does not exactly equal n^2 , it is therefore appropriate to consider the above quantity as a proportional factor and the dielectric constant is expressed as:

$$\epsilon(T) = En^2(10.27 \ \mu \text{m}, T),$$

where E is the proportional constant.

Spectral positions of natural absorption peaks in germanium have been studied by a number of investigators. McLean [2] investigated the absorption edge spectrum of germanium and found the optical energy gap at 300 K to be $E_s = 0.663$ eV or $\lambda_1 = 1.8703$ µm. Macfarlane et al. [8] further studied the absorption edge spectrum and found the temperature variation of the optical energy gap is essentially linear in the temperature range 200-300 K, but nonlinearity progressively predominates at lower temperatures as shown in figure 17. Lukes and Schmidt [9] studied the reflectivity spectrum of germanium and found two additional absorption peaks at λ₂~0.589 μm and $\lambda_3 \sim 0.282 \ \mu \text{m}$. The latter corresponds to that predicted by Yu and Cardona [33]. As a summary of these findings, one now has three absorption peaks; namely: $\lambda_1 = 1.8703 \ \mu \text{m}, \ \lambda_2 \sim 0.589 \ \mu \text{m}, \ \text{and} \ \lambda_3 \sim 0.282 \ \mu \text{m} \ \text{that}$ are supposed to have significant effects on the refractive index in the transparent region, 1.9-16 µm.

In this work, the selected data were fitted to an equation similar to eq (10) by including extra terms due to λ_2 and λ_3 . It was found, however, that introduction of the λ_2 and λ_3 terms did not improve the agreement obtained when only the λ_1 term was included. Furthermore, the coefficients of the λ_2 and λ_3 terms could not be uniquely defined because there were no reliable data in the regions bounded by and near the three peak wavelengths. Also, the value of B was found to be negligibly low and hence the contribution of the last term in eq (10) was insignificant. As a consequence, eq (18) was adopted and the least squares fitting of selected data to this equation yielded the following expression for the refractive index of germanium in the ranges of 1.9 to 18 μ m and 100-550 K:

$$n^{2}(\lambda,T) = \epsilon(T) + \frac{L(T)}{\lambda^{2}} (A_{0} + A_{1}T + A_{2}T^{2}),$$
 (28)

where

```
 \begin{split} \epsilon(T) &= 15.2892 + 1.4549 \times 10^{-3} T + 3.5078 \times 10^{-6} T^2 \\ &- 1.2071 \times 10^{-9} T^3, \\ L(T) &= \mathrm{e}^{-3\Delta L(T)/L_{269}}, \\ \lambda &= \text{wavelength in units of } \mu\text{m}, \\ T &= \text{temperature in units of } \mathrm{K}, \\ A_0 &= 2.5381, \\ A_1 &= 1.8260 \times 10^{-3}, \\ A_2 &= 2.8888 \times 10^{-6}, \end{split}
```

and from reference [60]

$$\begin{split} \frac{\Delta L(T)}{L_{293}} &= -0.089 + 2.626 \times 10^{-6} (T - 100) + 1.463 \\ &\times 10^{-8} (T - 100)^2 - 2.221 \times 10^{-11} (T - 100)^3 \\ &\qquad \qquad (100 < T < 293), \\ \frac{\Delta L(T)}{L_{293}} &= 5.790 \times 10^{-6} (T - 293) + 1.768 \\ &\times 10^{-9} (T - 293)^2 - 4.562 \times 10^{-13} (T - 293)^3 \\ &\qquad \qquad (293 < T < 1200). \end{split}$$

It is interesting to point out that the room temperature dielectric constant for germanium can now be calculated from the expression of ϵ in eq (28). The result is 16.009 which is in good agreement with the commonly accepted value of 16.0.

Equation (28) was used to calculate the recommended values of the refractive index of germanium with uncertainties of $\pm 2\times 10^{-3}$. The recommended values are given in table 4 and plotted in figure 18. To provide a visual comparision of the calculated values with experimental data, calculated values at a few specified temperatures and wavelengths are plotted in figures 12 and 13 where close agreement is revealed. Tables 5 and 6, respectively, give the calculated dn/dT and $dn/d\lambda$ values based on the first derivatives of eq (28) with respect to T and λ . The corresponding plots are shown in figures 19 and 20.

Uncertainties in the calculated dn/dT values are estimated based on Icenogle's data [5] which are

essentially the basis for eq (28). Icenogle et al. evaluated $\Delta n/\Delta T$ values using their own measurements of n and found the average uncertainty in $\Delta n/\Delta T$ to be about $\pm 0.5 \times 10^{-4} K^{-1}$. Error bars corresponding to this amount are drawn on the calculated curves in figures 14 and 15 where calculated results are compared with experimental data. Although accuracies of experimental dn/dT are not available in Lukes' work [36, 38, 59], it is reasonable to use the same error bar as the experimental errors because the n versus T curves in figure 12 are closely parallel.

Uncertainties in the calculated $dn/d\lambda$ are estimated from the expression:

$$\delta(du/d\lambda) \simeq \pm 2\delta n/\lambda$$
.

as discussed in subsection 3.1. Similar to the case of silicon, the uncertainties in $dn/d\lambda$ of germanium are about $\pm 5 \times 10^{-4} \mu \text{m}^{-1}$ at 2.55 μm , $1.2 \times 10^{-4} \mu \text{m}^{-1}$ at 10 μm , and $0.7 \times 10^{-4} \mu \text{m}^{-1}$ at 18 μm .

It should be noted that calculated values in tables 4, 5, and 6 are given with more digits than warranted for the purpose of tabular smoothness.

As these values are calculated from an equation, it is desirable to give enough digits to show the variation of the variables in the equation and to provide comparasion among neighboring entries. To identify the unwarranted insignificant digits in the values, an overstrike is used. Appropriate uncertainties in the recommended values are discussed in the text and quoted in the footnotes of the tables.

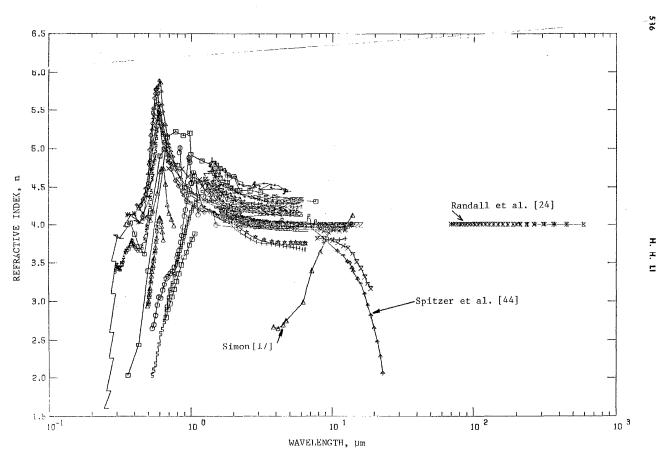


FIGURE 11. AVAILABLE EXPERIMENTAL REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence)

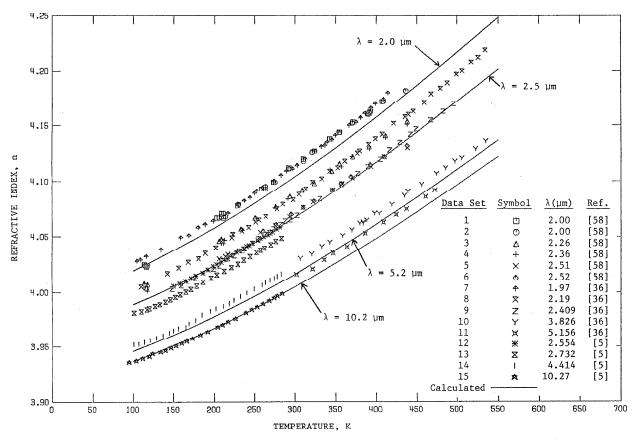


FIGURE 12. AVAILABLE EXPERIMENTAL REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence)

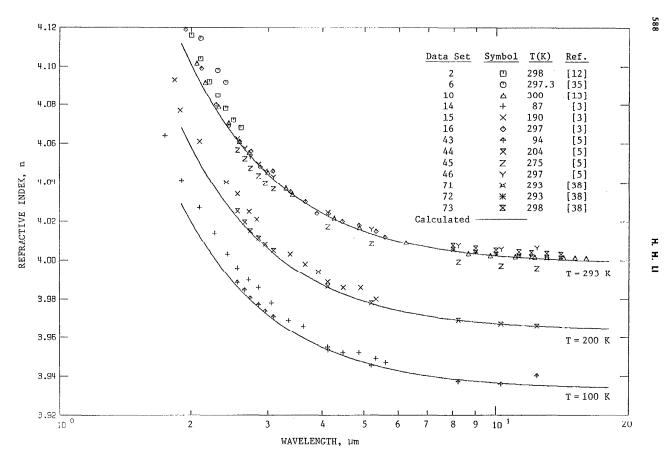


FIGURE 13. SELECTED EXPERIMENTAL REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence)

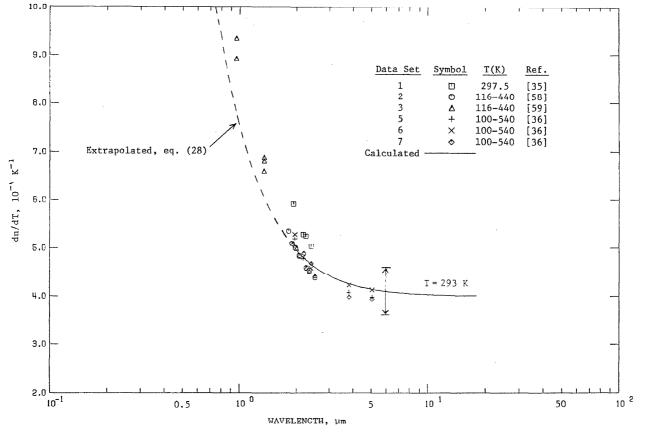


FIGURE 14. AVAILABLE EXPERIMENTAL dn/dT OF GERMANIUM (Wavelength Dependence)

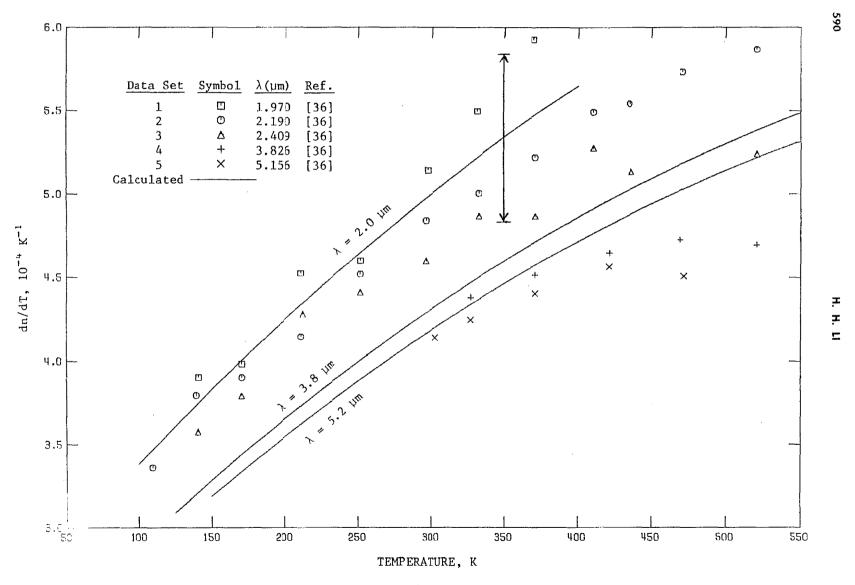


FIGURE 15. AVAILABLE EXPERIMENTAL dn/dT OF GERMANIUM (Temperature Dependence)

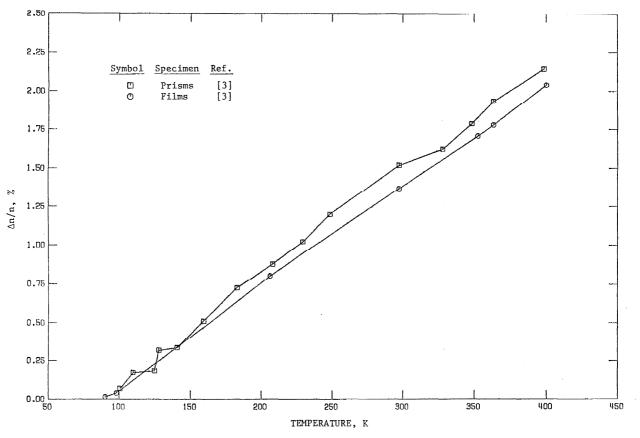


FIGURE 16. VARIATION OF REFRACTIVE INDEX OF GERMANIUM WITH TEMPERATURE AT WAVELENGTH 3 µm [3]

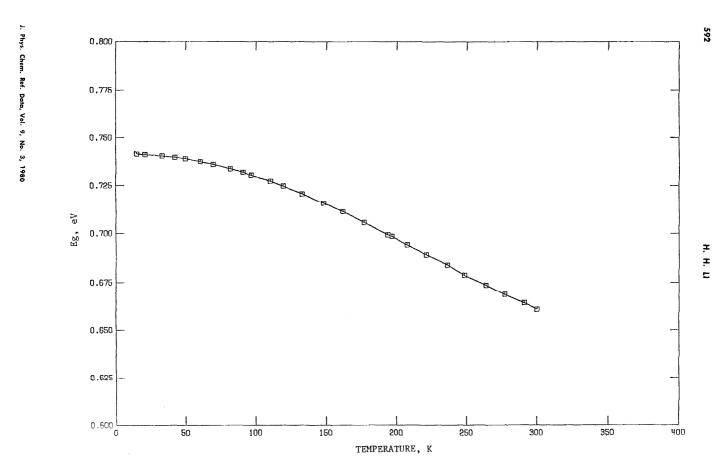


FIGURE 17. TEMPERATURE DEPENDENCE OF THE OPTICAL ENERGY GAP OF GERMANIUM [8]

TABLE 4. RECOMMENDED VALUES ON THE REFRACTIVE INDEX OF GERMANIUM*

					TEMPERA	TUDE V				
λ , μm	100	150	200	250	293	350	400	450	500	550
1.90	4.0290	4.0474	4.0680	4.0907	4.1117	4.1417	4.1697	4.1993	4.2302	4.2623
1.92	4.0270	4.0453	4.0659	4.0885	4.1094	4.1393	4.1672	4.1966	4.2274	4.2593
1.94	4.0251	4.0433	4.0638	4.0863	4.1072	4.1353	4.1647	4.1940	4.2246	4.2565
1.96	4.0232	4.0414	4.0618	4.0842	4.1072	4.1345	4.1623	4.1915	4.2220	4.2537
1.98	4.0214	4.0395	4.0598	4.0822	4.1029	4.134 <u>8</u> 4.1324	4.1599	4.1890	4.219 <u>4</u>	4.2510
5.00	4.0197	4.0377	4.0579	4.0802	4.1008	4.1302	4.1577	4.1856	4.2169	4.2484
2.05	4.015 <u>6</u>	4.0334	4.0534	4.0755	4.0959	4.1250	4.1523	4.1810	4.2110	4.2421
2.10	4.0135	4.0294	4.0493	4.0711	4.0914	4.1202	4.1472	4.1757	4.2054	4.2363
2.15	4.0081	4.0257	4.0454	4.0670	4.0872	4.1158	4.1425	4.1708	4.2003	4.2309
5.50	4.0048	4.0222	4.0417	4.0632	4.0832	4.1116	4.1382	4.1662	4.1954	4.2259
2.25	4.0017	4.0190	4.0383	4.0597	4.0795	4.1077	4.1341	4.1619	4.1909	4.2211
2.30	3.9987	4.0159	4.0352	4.0564	4.0761	4.1041	4.1303	4.1579	4.1867	4.2167
2.40	3.9934	4.0104	4.0294	4.0503	4.0698	4.0974	4.1233	4.1506	4.1791	4.2087
2.50	3.0887	4.0055	4.0243	4.0450	4.0842	4.0916	4.1172	4.1441	4.1723	4.2015
2.60	3.9845	4.0011	4.0197	4.0402	4.0593	4.0864	4.1117	4.1384	4.1663	4.1952
2.70	3.9808	3.9972	4.0157	4.0360	4.0549	4.0817	4.1068	4.1333	4.1609	4.1895
2.80	3.9775	3.9938	4.0121	4.0322	4.0509	4 0775	4 1025	4.1287	4.1561	4.1845
2.90	3.977 <u>5</u> 3.974 <u>5</u>	3.9907	4.0088	4.0288	4.0474	4.077 <u>6</u> 4.0738	4.1025	4.1246	4.1518	4.1800
3.00	3.9718	3.9878	4.0059	4.0257	4.0442	4.0704	4.0950	4.1209	4.1479	4.1759
3.20	3.9671	3.9830	4.0008	4.0204	4.0387	4,0646	4.0889	4.1144	4.1411	4.1688
3.40	3.9632	3.9785	3.3366	4.0160	4.0341	4.0598	4.0030	4.1091	4.1355	4.1029
3.60	3.9600	3.9755	3.9930	4.0123	4.0302	4.0557	4.0795	4.1046	4.1308	4.1580
3.80	3.9572	3.9727	3.9900	4.0092	4.0270	4.0523	4.0759	4.1008	4.1268	4.1538
4.00	3.9549	3.9702	3.9875	4.0065	4.0242	4.0493	4.0728	4.0975	4.1234	4.1502
4.25	3.9524	3.9676	3.9848	4.0037	4.0212	4.0462	4.0696	4.0942	4.1198	4.1464
4.50	3.9503	3.9655	3.9825	4.0013	4.0188	4.0435	4.0668	4.0913	4.1168	4.1433
4.75	3.9485	3.9636	3.9806	3.9993	4.0167	4.0414	4.0645	4.0888	4.1142	4.1405
5.00	3.9470	3.9620	3.9789	3.9976	4.0149	4.0395	4.0625	4.0868	4.1121	4.1383
5.50	3.9446	3,9595	3.9763	3.9948	4.0120	4.0365	4.0594	4.0834	4.1085	4.1345
6.00	3.9428	3.9576	3.9743	3.9927	4.0098	4.0342	4.0569	4.0809	4.1059	4.1318
6.50	3.9413	3.9561	3.9727	3.991T	4.0081	4.0324	4.0550	4.0789	4.1038	4.129 5
7.00	3.9402	3.9549	3.9715	3.9898	4.0068	4.0309	4.0536	4.0773	4.1021	4.1279
8.00	3.9385	3.9532	3.9697	3.9879	4.0048	4.0289	4.0514	4.0750	4.0997	4.1253
9.00	3.9374	3.9520	3.9684	3.9866	4.0034	4.0274	4.0498	$4.073\overline{4}$	4.0981	4.1236
10.00	3.9365	3.9511	3.9675	3.9856	4.0025	4.0264	4.0488	4.0723	4.0969	4.1223
11.00	3.9359	3.9505	3.9669	3.9849	4.0017	4.0256	4.0480	4.0715	4.0960	4.1214
12.00	3.935 <u>5</u>	3.950 <u>0</u>	3.966 <u>4</u>	3.984 <u>4</u>	4.0012	4.0250	4.047 <u>4</u>	4.070 <u>8</u>	4.095 <u>3</u>	4.120 <u>7</u>
13.00	3.935 <u>T</u>	3.949 <u>6</u>	3.966 <u>0</u>	3.984 <u>0</u>	4.000 <u>8</u>	4.0245	4.0469	4.070 <u>3</u>	4.094 <u>8</u>	4.1202
14.00	3.9348	3.9493	3.9657	3.9837	$4.000\overline{4}$	4.0242	4.0465	4.069 <u>9</u>	4.094 <u>4</u>	4.119 <u>7</u>
15.00	3.934 <u>6</u>	3.949 <u>ī</u>	3.965 <u>4</u>	3.983 <u>4</u>	$4.000\overline{1}$	4.024 <u>0</u>	4.0462	4.069 <u>6</u>	4.094 <u>1</u>	4.1194
16.00	3.934 <u>4</u>	3.948 <u>9</u>	3.9652	3.9832	3.999 <u>9</u>	4.0237	4.046 <u>0</u>	4.0694	4.093 <u>8</u>	4.119 <u>ī</u>
17.00	3.9342	3.9487	3.9650	3.983 <u>0</u>	3.999 <u>7</u>	4.0235	4.045 <u>8</u>	4.069 <u>T</u>	4.093 <u>5</u>	4.1188
18.00	3.9341	3.9486	3.9649	3.9829	3.9996	4.0234	4.045 6	4.0690	4.0934	4.1186

^{*} THE ESTIMATED UNCERTAINTY IN THE RECOMMENDED VALUES IS ±2X10*. RECOMMENDED VALUES ARE GIVEN TO MORE DIGITS THAN WARRANTED MERELY FOR THE PURPOSE OF TABULAR SMOOTHNESS. THE INSIGNIFICANT DIGITS OF THE VALUES ARE INDICATED BY OVERSTRIKES.

J. Phys. Chem. Ref. Data, Vol. 9, No. 3, 1980

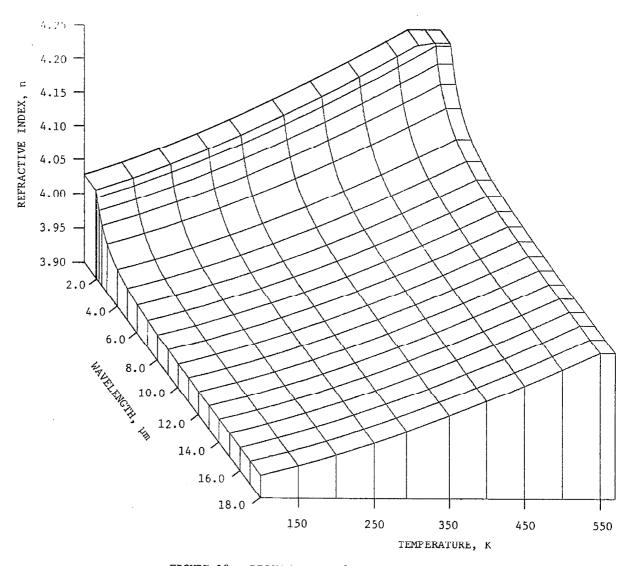


FIGURE 18. RECOMMENDED $n-\lambda-T$ DIAGRAM OF GERMANIUM

TABLE 5. RECOMMENDED VALUES ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF CERMANIUM*

λ, μm	TEMPERATURE, K										
λ, μιιι	100	150	200	250	593	350	400	450	500	550	
1.992 1.994 1.998 9005015 1.1988 9005015 1.1988 9005015 1.1988 9005015 9005000000000000000000000000000	100	150		55	15.16611951년66111959416602011대 29 0030 화 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의			45			

^{*}THE ESTIMATED UNCERTAINTY IN THE RECOMMENDED VALUES IS ±0.5X104 K4. RECOMMENDED VALUES ARE GIVEN TO MORE DIGITS THAN WARRANTED MERELY FOR THE PURPOSE OF TABULAR SMOOTHNESS. THE INSIGNIFICANT DIGITS OF THE VALUES ARE INDICATED BY OVERSTRIKES.

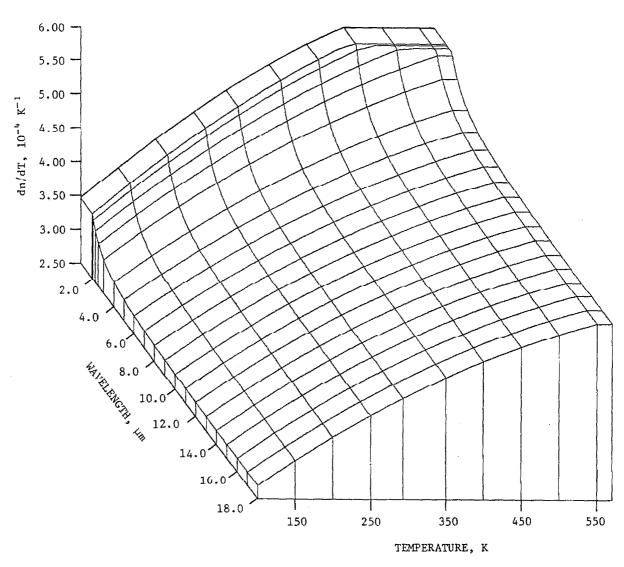


FIGURE 19. RECOMMENDED $dn/dT-\lambda-T$ DIAGRAM OF GERMANIUM

TABLE 6. CALCULATED VALUES ON THE WAVELENGTH DERIVATIVE OF REFRACTIVE INDEX OF GERMANIUM AT 293K *

λ, μm	-dn/dλ, 10 ⁻⁴ μm ⁻¹
1.90	117 <u>7.6</u>
1.92	1141.8
1.94	1107.5
1.96	1074.5
1.98	1042.8
1.30	
5.00	1012.3
2.05	941.2
2.10	87 <u>6.5</u>
2.15	81 <u>7.6</u>
2.20	76 <u>3.9</u>
2.25	71 <u>4.7</u>
5.30	66 <u>9.7</u>
2.40	59 <u>0.3</u>
2.50	523 <u>.0</u>
5.60	465. <u>5</u> 416. <u>1</u>
2.70	416. <u>1</u>
2.80	373.5
2.90	336.5
3.00	373.5 336.5 304.2 251.0
3.20	251.0
3.40	251.0 209.5 176.6 150.3 129.0 107.6 90.7 77.7 66.2
3.60	176.6
3.80	150.3
4.00	129.5
4.00 4.25	107.6
4.50	90.7
4.50 4.75	77.7
5.00	8.22
5.50	49. R
6.00	38.3
6.50	30.2
7.00	49. B 38. 3 30. 2 24. 2 16. 2
8.00	16.2
9.00	11.4
10.00	8.3
11.00	ř. ž
12.00	6.2 4.8
13.00	3.8
14.00	3.0
15.00	2.5
16.00	2.0
17.00	1.7
	1 · r
18.00	1.4

^{*}RECOMMENDED VALUES ARE GIVEN TO MORE DIGITS THAN HARRANTED MERELY FOR THE PURPOSE OF TABULAR SMOOTHNESS. THE INSIGNIFICANT DIGITS OF THE VALUES ARE INDICATED BY OVERSTRIKES. THE ESTIMATED UNCERTAINTIES IN THE RECOMMENDED VALUES ARE ABOUT ±5X10* µm² AT 2.55 µm, 1.2X10* µm² AT 10 µm, AND 0.7X10* µm² AT 18 µm.

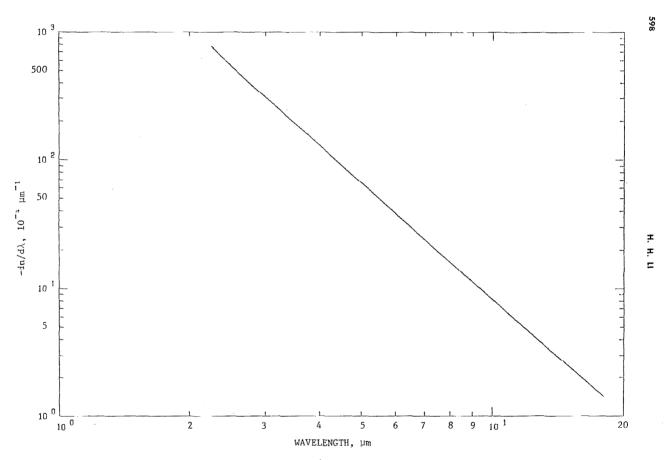


FIGURE 20. RECOMMENDED $dn/d\lambda$ CURVE OF GERMANIUM AT 293 K

4. Conclusions and Recommendations

Experimental data on the refractive index of crystalline silicon and germanium and its temperature derivative were exhaustively surveyed and reviewed. Values of physical properties which are related to the dispersion equation were selected from the open literature. In addition, a number of thin film data sets were also compiled.

The purpose of the present work was to survey and compile the available data and to generate recommended values of the refractive index and its temperature derivative for crystalline silicon and germanium. Recommended values for these materials were generated based on currently available data. Since the state of the refractive index of either of the crystals have not been well defined, our recommendations should be considered at best representing average values of the selected data sets. Many factors are known to influence the accuracy of the refractive index of a crystal. Although the minimum deviation method is known to be the most accurate way to determine the refractive index, this is not true in the case of silicon and germanium. Being highly refractive, the prism specimens used must be thin, usually about 15° apex angle or sometimes lower, thus giving rise to relatively higher uncertainties. Other possible sources of experimental errors were discussed by Primak [15]. However, the most important factor which contributes to the total error is the impurity content of the specimen. Although this is a well known source of error, unfortunately, this very important piece of information is usually not reported. As a consequence, discrepancies among the currently available data cannot be reasonably resolved.

Unless one is satisfied with the existing data having uncertainties of a few parts in the third decimal place, serious considerations should be given to obtaining data reliable in the fourth or fifth decimal place. A systematic measurement program on the refractive index should be carried out with the following considerations:

- 1. Experimental method. Because the minimum deviation method does not yield high accuracy in the case of Si and Ge, it is strongly felt that the interference method should be used. In this method, the determination of interference order plays the decisive role in the accuracy of the results. In order to obtain high accuracy, thick plate specimens should be used.
- 2. Sample characterization. As the impurity content of the sample strongly affect the refractive index, the impurities in the sample should be ascertained and reported. Merely reporting the electrical resistivity of the sample is not adequate. The nature and amount of impurities should specifically be reported. In order to see the effects of impurities on the refractive index, measurement should be carried out for a group of specimens with systematically controlled impurities.
 - 3. Environmental control. Since both silicon and

germanium have high temperature coefficients of refractive index (in the order of 10^{-4}K^{-1}), the temperature of the sample has to be carefully controlled in order to achieve the required accuracy. Pressure has little effect on the refractive index under ordinary conditions. The pressure coefficient of the refractive index of Ge at 297 K is $(1/n)(dn/dP = -7 \pm 2 \times 10^{-7} \text{kg}^{-1} \text{cm}^2)$ [3]. That of Si is $-3 \pm 2 \times 10^{-7} \text{kg}^{-1} \text{cm}^2$ [3].

In conclusion, it should be emphasized that the present work does not resolve the discrepancies between the available data sets, it simply recommends the most probale values of the refractive index that a pure crystal of Si and Ge may have with the quoted uncertainties. Also, it should be noted that, as in any statistical study of this type, the dispersion equations, eqs (22) and (28), are valid to the reported accuracy only within the region of experimental data. In general, extrapolation of these equations for use outside of this region is invalid for quantitative results. Finally, the type of analysis presented here assumes the data to be an absolutely correct representation of the model at hand, which is not generally true since the model is an oversimplification of the true dispersion relation. However, for predictive purposes, based upon the experimental data from several authors, and within the usable region of the data, we believe that these equations are valid for calculation of the refractive index in the given wavelength and temperature regions.

5. Acknowledgments

This work was jointly supported by the Office of Standard Reference Data of the National Bureau of Standards, U.S. Department of Commerce, and by the Defense Logistics Agency of the U.S. Department of Defense. Their support is gratefully acknowledged.

6. References

- Crawford, J.H. and Slifkin, L.M., Point Defects in Solids, Vol. 2 of Semiconductors and Molecular Crystals, Plenum Press, New York, 480 pp., (1975).
- [2] McLean, T.P., "The Absorption Edge Spectrum of Semiconductors," Prog. Semiconductors, 5, 53-102 (1960).
- [3] Cardona, M., Paul, W., and Brooks, H., "Dielectric Constant of Germanium and Silicon as a Function of Volume," Phys. Chem. Solids, 8, 204-6 (1959).
- [4] Lukes, F., "The Temperature-Dependence of the Refractive Index of Silicon," Phys. Chem. Solids, 11, 342-4 (1959).
- [5] Icenogle, H.W., Platt, B.C., and Wolfe, W.L., "Refractive Indexes and Temperature Coefficients of Germanium and Silicon," Appl. Opt., 15(10), 2348-51 (1976).
- [6] Young, K.F. and Frederikse, H.P.R., "Compilation of the Static Dielectric Constant of Inorganic Solids," J. Phys. Chem. Ref. Data, 2(2), 313-409 (1973).
- [7] Macfarlane, G.G., McLean, T.P., Quarrington, J.E., and Roberts, V., "Fine Structure in the Absorption-Edge Spectrum of Si," Phys. Rev., 111, 1245-54 (1958).
- [8] Macfarlane, G.G., McLean, T.P., Quarrington, J.E., and Roberts, V., "Fine Structure in the Absorption Edge Spectra of Ge," Phys. Rev., 108, 1377-83 (1957).

- [9] Lukes, F. and Schmidt, E., "The Fine Structure and the Temperature Dependence of the Reflectivity and Optical Constants of Ge, Si and III-V Compounds," in Proceedings of the International Conference on Physical Semiconductors, 389-94 (1962).
- [10] Ballard, S.S., McCarthy, K.A., and Wolfe, W.L., "Optical Materials for Infrared Instrumentation," Michigan University, Willow Run Lab. Rept. No. 2389-11-S, 115 pp. (1959). [AD 217 367]
- [11] Coblentz, W.W., "Transmission and Refraction Data on Standard Lens and Prism Material with Special Reference to Infrared," J. Opt. Soc. Am., 4, 432-47 (1920).
- [12] Briggs, H. B., "Optical Effects in Bulk Silicon and Germanium," Phys. Rev., 77(2), 287 (1950).
- [13] Salzberg, C. D. and Villa, J. J., "Infrared Refractive Indexes of Silicon, Germanium and Modified Selenium Glass," J. Opt. Soc. Am., 47(3), 244-6 (1957).
- [14] Lukes, F., "The Temperature-Dependence of the Refractive Index of Silicon," Czech. J. Phys., B10, 317-26 (1960).
- [15] Primak, W., "Refractive Index of Silicon," Appl. Opt., 10(4), 759-63 (1971).
- [16] Villa, J. J., "Additional Data on the Refractive Index of Silicon," Appl. Opt., 11(9), 2102-3 (1972).
- [17] Simon, I., "Optical Constants of Germanium, Silicon, and Pyrite in the Infrared," J. Opt. Soc. Am., 41(10), 730 (1951).
- [18] Spitzer, W. G., Gobeli, G. W., and Trumbore, F. A., "Effect of Heat Treatment on the Optical Properties of Heavily Doped Silicon and Germanium," J. Appl. Phys., 35(1), 206-11 (1964).
- [19] Runyan, W. R., "Silicon for Infrared Optical Use," in Proceedings of the OSU-WADD Symposium on Electromagnetic Windows, U.S. Air Force Rept. WADD-TR-60-274, Vol. 1, 53-73 (1960).
- [20] Fhilipp, H. R. and Taft, E. A., "Optical Constants of Silicon in the Region 1 to 10 eV," Phys. Rev., 120(1), 37-8 (1960).
- [21] Archer, R. A., "Determination of the Properties of Films on Silicon by the Method of Ellipsometry," J. Opt. Soc. Am., 52(9), 970 (1962).
- [22] Bennett, J. M. and Booty, M. J., "Computational Method for Determining n and s for a Thin Film for the Measured Reflectance, Transmittance, and Film Thickness," Appl. Opt., 5(1), 41-3 (1966).
- [23] Vedam, K., Knausenberger, W., and Lukes, F., "Ellipsometric Method for the Determination of All the Optical Parameters of the System of an Isotropic Non-Absorbing Film on an Isotropic Absorbing Substrate. Optical Constants of Silicon," J. Opt. Soc. Am., 59(1), 64-71 (1969).
- [24] Randall, C. M. and Rawcliffe, R. D., "Refractive Indices of Germanium, Silicon and Fused Quartz in the Far Infrared," Appl. Opt., 6(11), 1889-95 (1967).
- [25] Verleur, H. W., "Determination of Optical Constants from Reflectance or Transmittance Measurements on Bulk Crystals or Thin Films," J. Opt. Soc. Am., 58(10), 1356-64 (1968).
- [26] Grigorovici, R. and Vancu, A., "Optical Constants of Amorphous Silicon Films Near the Main Absorption Edge", Thin Solid Films, 2, 105-10 (1968).
- [27] Brodsky, M. H., Title, R. S., Weiser, K., and Pettit, G. D., "Structural, Optical and Electrical Properties of Amorphous Silicon Films," Phys. Rev. B, 1(6), 2632-41 (1970).
- [28] Shevchenko, G. K., Rachkovskii, R. R., Kol'tsov, S. I., and Aleskovskii, V. B., "Influence of the Surface Film on the Refractive Index of Single-Crystal Silicon," Zh. Prikl. Khim. (Leningrad), 45(11), 2541-3 (1972).
- [29] Thutupalli, G. K. M. and Tomlin, S. G., "The Optical Properties of Amorphous and Crystalline Silicon," J. Phys. C., Solid State Phys., 10, 467-77 (1977).

- [30] Sato, T., "Spectral Emissivity of Silicon," Jpn. J. Appl. Phys., 6(3), 339-47 (1967).
- [31] Hertzberger, M. and Salzberg, C. D., "Refractive Indices of Infrared Optical Materials and Color Correction of Infrared Lenses," J. Opt. Soc., Am., 52(4), 420-7 (1962).
- [32] Moss, T. S., "Inter-Relation Between Optical Constants for Lead Telluride and Silicon," Proc. Phys. Soc., London, B66, 141-4 (1953).
- [33] Yu, P. Y. and Cardona, M., "Temperature Coefficient of Refractive Index of Diamond- and Zinc-Blende-Type Semiconductors," Phys. Rev. B, 2(8), 3193-7 (1970).
- [34] Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R., Thermal Expansion—Nonmetallic solids, Vol. 13 of Thermophysical Properties of Matter—The TPRC Data Series, 1FI/Plenum, New York, p. 154 (1977).
- [35] Rank, D. H., Bennett, H. E., and Cronemeyer, D. C., "The Index of Refraction of Germanium Measured by an Interference Method," J. Opt. Soc. Am., 44(1), 13-6 (1954).
- [36] Lukes, F., "The Temperature Dependence of the Refractive Index of Germanium," Czech, J. Phys., 10(10), 742-8 (1960).
- [37] Lukes, F., "Optical Constants of Thin Germanium Films," Czech. J. Phys., B10, 59-65 (1960).
- [38] Edwin, R. P., Dudermel, M. T., and Lamare, M., "Refractive Index Measurements of a Germanium Sample," Appl. Opt., 17(7), 1066-8 (1978).
- [39] Salzberg, C. D. and Villa, J. J., "Index of Refraction of Germanium," J. Opt. Soc. Am., 4 (8), 579 (1958).
- [40] Cardona, M., Paul, W., and Brooks, H., Conference on Solid State Physics, Brussels, June (1958).
 [41] Brattain, W. H. and Briggs, H. B., "The Optical Con-
- [41] Brattain, W. H. and Briggs, H. B., "The Optical Constants of Germanium in the Infrared and Visible," Phys. Rev., 75, 1705-10 (1949).
- [42] Collins, R. J., "Infrared Properties of Germanium," Purdue University, Ph. D. Thesis (1953).
- [43] Oswald, F. and Schade, R., "On the Determination of the Optical Constants of Semiconductors of Type A^{III}B^V in the Infrared," Z. Naturforsch., 9a(7-8), 611-7 (1954).
- [44] Spitzer, W. G. and Fan, H. Y., "Determination of Optical Constants and Carrier Effective Mass of Semiconductors," Phys. Rev., 106(5), 882-90 (1957).
- [45] Archer, R. J., "Optical Constants of Germanium: 3600 A to 7000 A," Phys. Rev., 110(2), 354-8 (1958).
- [46] Philipp, H. R. and Taft, E. A., "Optical Constants of Germanium in the Region 1 to 10 eV," Phys. Rev., 113(4), 1002-5 (1959).
- [47] Huldt, L. and Staffin, T., "Optical Constant of Evaporated Films of Zinc Sulphide and Germanium in the Infrared," Opt. Acta, 6(1), 27-36 (1959).
- [48] Kornfeld, M. I., "Dispersion of Light in Germanium," Sov. Phys. Solid State, 2(1), 42-3 (1960).
- [49] Kiseleva, N. K. and Pribytkova, N. N., "Determination of the Optical Constants of Ge and CdTe by the Reflection Method," Opt. Spectros., 10(2), 133-4 (1961).
- [50] Aronson, J. R. and McLinden, H. G., "Low-Temperature Far-Infrared Spectra of Germanium and Silicon," Phys. Rev., 135(3A), A785-8 (1964).
- [51] Tauc, J., Abraham, A., Pajasova, L., Grigorovici, R., and Vancu, A., "Optical Properties of Non-Crystalline Semiconductors," in *Physics of Non-Crystalline Solids, Pro*ceedings of the International Conference (Delft, July 1964), (Prins, J.A., Editor), Interscience Publishers, New York (1965).
- [52] Potter, R. F., "Optical Constants of Germanium in the Spectral Region from 0.5 eV to 3.0 eV," Phys. Rev., 150(2), 562-7 (1966).
- [53] Gisin, M. A. and Ivanov, V. A. "Optical Properties of Thin Germanium Films in the Infrared Region of the Spectrum," Opt. Spectros., 26(2), 124-5 (1969).

- [54] Wales, J., Lovitt, G. J. and Hill, R. A., "Optical Properties of Germanium Films in the 1-5 μm Range," Thin Solid Films, 1(2), 137-50 (1967).
- 55] Knausenberger, W. H. and Vedam, K., "Optical Constants of Germanium by Ellipsometry," Phys. Lett., 29A(8), 428-9 (1969).
- [56] Donovan, T. M., Spicer, W. E., Bennett, J. M., and Ashley, E. J., "Optical Properties of Amorphous Germanium Films," Phys. Rev. B, 2(2), 397-413 (1970).
- [57] Jungk, G., "Determination of Optical Constants: Disordered Germanium," Phys. Status Solidi B, 44, 230-44 (1971).
- [58] Lukes, F., "The Temperature-Dependence of the Refractive Index of Germanium," Czech. J. Phys., 8(2), 253-4 (1958).
- [59] Lukes, F., "On the Theory of the Temperature Dependence of the Refractive Index of Insulators and Semi-conductors," Czech. J. Phys., 8(4), 423-34 (1958).
- [60] Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Desai, P.D., Thermal Expansion—Metallic Elements and

Alloys, Vol. 12 of Thermophysical Properties of Matter—
The TPRC Data Series, IFI/Plenum, New York, p. 116
(1975).

Appendix

The tables included in the Appendix are available experimental data compiled during the course of present work. The collected information covers the reported works in the last three decades from 1949 to 1978.

The tables give for each set of data the following information: the reference number, author's name (or names), year of publication, wavelength range, temperature range, the description and characterization of the specimen, and information on measurement conditions contained in the original paper.

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) [Temperature, T, K; Wavelength, λ , μ m; Refractive Index, n]

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
1	(T=29	8 K)	Sample from a commercial Electromet	Briggs, H.B., 1949
[12]	1.05	3.565	melt with a purity of 99.8%; prismatic	
	1.10	3.553	specimen of 11°24'11" angle; index of	
	1.20	3.533	refraction measured by method of	
	1.40	3.499	minimum deviation; data extracted	
	1.60	3.480	from a table.	
	1.80	3.466	TIOM a Labie.	
	2.00	3.458		
	2.20	3.451		
	2.40	3.447		
	2.60	3.443		
2	(T=29	8 K)	Polycyrstalline; ρ∿0.7 Ω-cm; im-	Simon, I., 1951
[17]	4.145	1.416	purities: 0.70% Fe, 0.55% Al, 0.32%	
	4.952	1.467	Ca, 0.06% Ti, 0.05% Mn, 0.04% C,	
	6.203	1.700	0.04% Cr, 0.01% P, and traces of	
	7.193	2.007	Cu, Ni and S; reflectances at 20	
	8.305	2.260	and 70 degree incidence angles ob-	
	9.967	2.840	tained; refractive indices obtained	
	12.565		by a graphical analysis; data taken	
	12.505	3.056	from a figure.	
2	(T- 2)	00 1/)		Calabana C.D. and
3		99 K)	Single crystal; purity unknown;	Salzberg, C.D. and
[13]	1.3570	3.4975	supplied by Texas Instruments, Inc.,	Villa, J.J., 1957
	1.3673	3.4962	Dallas, TX; prism cut with faces	
	1.3951	3.4929	30×30 cm and refracting angle of	
	1.5295	3.4795	15.8°; index of refraction measured	
	1.6606	3.4696	by autocollimation method; data	
	1.7092	3.4664	with uncertainty ±2 in fourth	
	1.8131	3.4608	decimal place taken from a table.	
	1.9701	3.4537		
	2.1526	3.4476		
	2.3254	3.4430		
	2.4373	3.4408		
	2.7144	3.4358		
	3.00	3.4320		
	3.3033	3.4297		
	3.4188	3.4286		
	3.50	3.4284		
	4.00	3.4255		
	4.258			
		3.4242		
	4.50	3.4236		
	5.00	3.4223		
	5.50	3.4213		
	6.00	3.4202		
	6.50	3.4195		
	7.00	3.4189		
	7.50	3.4186		
	8.00	3.4184		
	8.50	3.4182		
	10.00	3.4179		
	10.50	3.4178		
	11.04	3.4176		
4	(T=10	10 K)	5° silicon prism mounted against	Cardona, M., Paul, W
		3.526	a plane mirror; Abbe autocollima-	and Brooks, H., 1959
[7]				CINC DICCUS A 11 . 4 TANA
[3]	1.007 1.055	3.520	tion method applied to measure the	

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
4(cont.)	1.134	3.504	deviation angle to within ±1'; data	Cardona, M., Paul, W.
[3]	1.244	3.488	extracted from a figure.	and Brooks, H., 1959
	1.387	3.463	0	, , ,
	1.545	3.440		
	1.736	3.428		
	1.879	3.420		
	2.086	3.412		
	2.245	3.406		
	2.643	3.399		
	3.025	3.393		
	3.599	3.388		
	3.902	3.388		
	4.125	3.385		
	4.475	3.379		
	4.905	3.375		
5		94 K)	5° silicon prism mounted against a	Cardona, M., ct al.
[3]	1.166	3.516	plane mirror; Abbe autocollimation	1959
	1.229	3.506	method applied to measure the	
	1.372	3.477	deviation angle to within ±1'; data	
	1.530	3,460	extracted from a figure.	
	1.752	3.439		
	1.896	3.433		
	2.086	3.425		
	2.246	3.419		
	2.596	3,411		
	3.026	3,408		
	3.329	3.404		
	3.567	3.401		
	3.902	3.400		
	4.093	3.397		
	4.460	3.394		
	4.890	3.391		
6		98 K)	5° silicon prism mounted against a	Cardona, M., et al.
[3]	1.230	3.519	plane mirror; Abbe autocollimation	1959.
	1.340	3.497	method applied to measure the	
	1.547	3.474	deviation angle to within ± 1 '; data	
	1.737	3.458	extracted from a figure.	
	1.896	3.449		
	2.055	3.440		
	2.246	3.434		
	2.405	3.429		
	2.596	3.426		
	3.026	3.420		
	3.568	3.415		
	3.871	3.414		
	4.094	3.414		
	4.460	3,411		
	4.891	3.412		
7		98 K)	Crystal specimens; no details of	Runyan, W.R., 1960
[19]	1.375	3.497	source, sample preparation and mea-	
	1.437	3.492	surement given; data read from a	
	1.449	3.487	figure; temperature not given,	
	1.487	3.483	298 K assumed.	
	1.512	3.479		

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

Data Set	λ	n	Specifications and Remarks	Author(s),	Vear
[Ref.]			operation and manage		
7(cont.)	1.562	3.475		Runyan, W.R.,	1960
[19]	1.612	3.471		•	
	1.687	3.467			
	1.737	3.464			
	1.787	3.461			
	1.850	3.458			
	1.912	3.455			
	2.000	3.451			
	2.088	3.448			
	2.214	3.445			
	2.352	3.441			
	2.477	3.439			
	2.628	3.437			
	2.792	3.435			
	2.943	3.433			
	3.081	3.432			
	3.257	3.430			
	3.408	3.429			
	3.622	3.427			
	3.811 4.088	3.426			
	4.340	3.425			
	4.617	3.423			
	4.957	3.422			
	5.309	3.421			
	5.624	3.421			
	5.977	3.420			
	6.342	3.420			
	6.795	3.419			
	7.186	3.419			
	7.715	3.418			
	8.143	3.418			
	8.508	3.418			
	8.848	3.418			
	9.113	3.418			
	9.339	3.418			
	9.679	3.418			
	10.032	3.418			
	10.347	3.418			
	10.574	3.418			
	10.989	3.418			
	11.040	3.418			
8	(T=300	K)	Single crystal; etched surfaces; near	Philipp, H.R.	and
[20]	0.124	0.332	normal reflectance spectrum between	Taft, E.A., 1	
1,	0.128	0.414	0.11 and 1.24 µm observed; phase angle	,,	
	0.138	0.409	computed using the Kramers-Kronig		
	0.150	0.488	relation; optical constants deter-		
	0.165	0.524	mined from the Fresnel formulae; data		
	0.174	0.564	taken from a figure.		
	0.187	0.687	12011 0 1280111		
	0.207	0.978			
	0.217	1.187			
	0.227	1.397			
	0.229	1.524			
	0.237	1.607			
	0.240	1.606			
	0.247	1.521			

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

Data Set	λ	r	Specifications and Domorka	Author(a) Yaar
[Ref.]	Λ	n	Specifications and Remarks	Author(s), Year
8(cont.)	0.257	1.646		Philipp, H.R. and
[20]	0.267	1.941		Taft, E.A., 1960
	0.269	2.322		
	0.277	2.913		
	0.283	3.421		
	0.283	4.182		
	0.295	4.731		
	0.301 0.307	4.815 4.857		
	0.307	4.941		
	0.328	4.982		
	0.335	5.108		
	0.335	5.235		
	0.343	5.573		
	0.343	5.954		
	0.344	6.420		
	0.352	6.800		
	0.357	6.884		
	0.370	6.291		
	0.388	5.443		
	0.398 0.409	5.019 4.765		
	0.409	4.703		
	0.439	4.424		
	0.460	4.254		
	0.474	4.169		
	0.498	4.041		
	0.544	3.912		
	0.587	3.784		
	0.666	3.697		
	0.750	3.611		
	0.859	3.567		
9	(T=298	3 к)	Single crystal; ellipsometry method	Archer, R.A., 1962
[21]	0.5461	4.050	used to determine refractive index;	, , , , , , , , , , , , , , , , , , , ,
			the effect of oxidized film on	
			silicon corrected; error in refrac-	
			tive index about ±0.007.	
10	(T=298	₹ K)	n-type, phosphorus doped silicon	Spitzer, W.G.,
[18]	3.456	3.007	samples; carrier concentration N =	Gobeli, G.W., and
[]	4.458	2.654	7.5 x 10 ¹⁹ cm ⁻³ ; polished; refractive	Trumbore, F.A, 1964
	5.210	2.345	index derived from reflectivity mea-	110,110,111,111,111
	5.555	2.155	surements; data taken from a figure.	
	5.963	1.973		
	6.370	1.764		
	6.715	1.588		
	7.153	1.443		
	7.748	1.266		
	8.436	1.172		
11	(T=298	3 K)	n-type, phosphorus doped silicon	Spitzer, W.G., et al.,
[18]	3.456	2.943	silicon samples; carrier concentra-	1964
13	4.459	2.584	tion N = $7.5 \times 10^{19} \text{ cm}^{-3}$: polished:	
	5.179	2.288	specimen heated at 1310 K for 30 sec	
	5.618	2.111	specimen heated at 1310 K for 30 sec in a vacuum of $\leq 1 \times 10^{-7}$ torr; refrac-	
	5.963	1.922	tive index derived from reflectivity	

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
11(cont.)	6.371	1.701	measurements; data taken from a	Spitzer, W.G.,
[18]	6.778	1.550	figure.	Gobeli, G.W., and
	7.154	1.361		Trumbore, F.A., 1964
	7.436	1.266		
	7.749	1.191		
	8.468	1.084		
12		98 K)	n-type, phosphorus doped silicon	Spitzer, W.G., et al.,
[18]	3.425	2.937	samples; carrier concentration N =	1964
	4.459	2.590	7.5×10^{19} cm ⁻³ ; polished; specimen	
	5.179	2.288	heated at 1310 K for 60 sec in a	
	5.587	2.111	vacuum of ≤1 x 10 ⁻⁷ Torr; refractive	
	5.963	1.909	index derived from reflectivity mea-	
	6.370	1.714	surements; data taken from a figure.	
	7.123	1.380		
	7.436	1.291		
	7.749	1.216		
	8.499	1.109		
13		98 K)	n-type, phosphorus doped silicon	Spitzer, W.G., et al.,
[18]	3.456	3.000	samples; carrier concentration N =	1964
	4.459	2.559	7.5×10^{19} cm ⁻³ ; polished; specimen	
	5.179	2.269	heated at 1310 K for 90 sec in a	
	5.587	2.080	vacuum of ≤1 x 10 ⁻⁷ Torr; refractive	
	5.963	1.878	index derived from reflectivity mea-	
	6.371	1.676	surements; data taken from a figure.	
	6.716	1.481	•	
	7.154	1.323		
	7.436	1.222		
	7.718	1.146		
	8.469	1.033		
14	(T≈2	98 K)	n-type, phosphorus doped silicon	Spitzer, W.G., et al.,
[18]	3.487	2.981	samples; carrier concentration N =	1964
	4.521	2.572	7.5×10^{19} cm ⁻³ ; polished; specimen	
	5.180	2.250	heated at 1310 K for 120-210 sec in	
	5.587	2.092	a vacuum of $\leq 1 \times 10^{-7}$ Torr; refrac-	
	6.339	1.695	tive index derived from reflectivity	
	6.778	1.500	measurements; data taken from a	
	7.185	1.336	figure.	
	7.436	1.247		
	7.749	1.172		
	8.437	1.058		
15	(T=2	98 K)	Thin film specimen of 0.0346 µm thick;	Bennett, J.M. and
[22]	0.400	3.191	no details of sample preparation	Booty, M.J., 1966
	0.420	3.162	given; reflectance and transmittance	
	0.441	3.128	measured and reduced to refractive	
	0.462	3.077	indices using iterative curve fitting	
	0.481	3.030	technique; data taken from a figure.	
	0.502	2.979		
	0.522	2.923		
	0.541	2.885		
	0.560	2.843		
	0.582	2.804		
	0 (00	2.775		
	0.600	2.115		
	0.600	2.749		

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
16 [23]	(T=30 0.5461	00 K) 4.140	Single crystal; specimens with surface either chemically etched or cleaved; refractive index determined using ellipsometric method; effects of the SiO ₂ thin film on the surface due to aging, annealing, chemical treatment, etc. were corrected and the true value of refractive index obtained; data taken from a table.	Velam, K., Kniusenberger, W., and Lukes, F., 1969
17 [24]	(T=30 70.392 72.951 75.697 78.662 81.872 84.992 89.138 93.279 97.822 102.83 108.97 113.92 120.77 128.49 138.22 148.44 160.29 177.27 192.57 210.76 238.27 270.35 312.38 370.01 453.08 604.44	3.4191 3.4186 3.4193 3.4188 3.4188 3.4189 3.4189 3.4187 3.4184 3.4184 3.4184 3.4184 3.4181 3.4181 3.4181 3.4182 3.4180 3.4182 3.4180 3.4182 3.4180 3.4180 3.4181	Single crystal; obtained from Exotic Materials, Costa Mesa, CA; $\rho > 10~\Omega - cm$; plate specimen of 1.94067 \pm 2.3 x 10^{-4} mm thick; refractive indices measured using interference method; data taken from a figure.	Randall, C.M. and Raweliffe, R.D., 1967
18 [24]	(T=300 66.242 70.395 72.689 75.704 78.669 81.875 85.354 88.749 93.282 97.354 102.83 107.80 113.92 120.77 128.50 138.23	3.4186 3.4185 3.4183 3.4182 3.4182 3.4184 3.4184 3.4184 3.4184 3.4181 3.4181 3.4181 3.4180 3.4180 3.4178	Single crystal; obtained from Exotic Materials, Costa Mesa, CA; $\rho > 10~\Omega - {\rm cm}$; plate specimen of 6.41495 ± 5 x 10^{-4} mm thick; refractive indices measured using interference method; data taken from a figure.	Randall, C.M. and Rawcliffe, R.D., 1967

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

[Ref.]	λ	n	Specifications and Remarks	Author(s), Year
18(cont.)	148.45	3.4179		Randall, C.M. and
[24]	160.30	3.4178		Rawcliffe, R.D., 1967
	175.73	3.4177		
	190.76	3.4175		
	213.02	3.4175		
	235.51	3.4174		
	270.42	3.4170		
	312.53	3.4166		
	370.27	3.4156		
19	(T=298	3 K)	Bulk silicon; no details of sample	Verleur, H.W., 1968
[25]	0.124	0.35	preparation and experiment given;	
	0.133	0.39	refractive indices deduced from	
	0.151	0.43	normal reflectance measurement	
	0.176	0.47	using classical oscillator fitting	
	0.196	0.54	technique; data taken from a	
	0.216	0.70	figure.	
	0.225	0.74	116010.	
	0.230	0.94		
	0.233	1.02		
	0.239	0.90		
	0.242	0.74		
		0.74		
	0.264			
	0.274	1.09		
	0.286	1.76		
	0.290	2.51		
	0.300	3.33		
	0.311	3.92		
	0.316	4.15		
	0.322	4.15		
	0.331	4.11		
	0.341	4.39		
	0.341	4.54		
	0.348	4.62		
	0.366	5.45		
	0.374	6.07		
	0.378	6.47		
	0.382	6.54		
	0.390	6.39		
	0.399	5.84		
	0.418	5.37		
	0.445	4.90		
	0.488	4.54		
	0.576	4.03		
	0.717	3.72		
	1.033	3.52		
	1.033	3.52		
	1.598	3.45		
	3.196	3.41		
	6.794	3.37		
	11.698	3.37		
20	(T=2	98 K)	Amorphous silicon film; deposited	Grigorovici, R. and
[26]	0.565	4.165	on polished silica glass slides by	Vancu, A., 1968
r — + 2	0.591	4.157	vacuum ($<1 \times 10^{-5}$ mm Hg) evaporation	- •
	0.622	4.119	of pure silicon crystals (ρ = 10	
	0.654	4.059	Ω-cm) heated by electron bombardment;	

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
20(cont.)	0.692	3.968	refractive indices determined based	Grigorovici, R. and
[26]	0.732	3.938	on transmissivity, reflectivity and	Vancu, A., 1968
	0.780	3.877	thickness measurements; data read	
	0.836	3.817	from a figure.	
	0.890	3.756		
	0.963	3.711		
	1.041	3.650		
	1.143	3.620		
	1.246	3.597		
	1.381	3.589		
	1.550	3.559		
	1.784	3.529		
	2.050	3.513		
21	(T=298	•	Thin films on substrates of single	Brodsky, M.H.,
[27]	0.95	3.97	crystal sapphire disk; deposited by	Title, R.S.,
	1.02	3.90	rf sputtering of a 6 inch diameter	Weiser, K., and
	1.14	3.84	intrinsic silicon cathode; substrates	Pettit, G.D., 1970
	1.29	3.80	held at or below room temperature and	
	1.52	3.75	in an argon atmosphere of 0.01 Torr	
	1.74	3.72	during deposition; specimen thickness	
	1.94	3.70	0.3 to 10 µm determined to within ±10%;	
	2.07	3.69	refractive indices determined from the	
	2.25	3.68	transmission interference fringes and	
			thickness of the specimen; data taken from a figure.	
22	(T=298	K)	Thin films on substrates of single	Brodsky, M.H., et al.,
[27]	0.93	3.95	crystal sapphire disk; deposited by	1970
(·)	0.98	3.91	rf sputtering of a 6 inch diameter in-	20,0
	1.05	3.86	trinsic silicon cathode; substrates	
	1.16	3.82	held at or below room temperature and	
	1.36	3.76	in an argon atmosphere of 0.01 Torr	
	1.50	3.73	during deposition; specimen thickness	
	1.70	3.71	0.3 to 10 µm determined to within ±10%;	
	1.96	3.68	specimens annealed at 365 K for 2 hours;	
	2.25	3.66	refractive indices determined from the	
			transmission interference fringes and	
			thickness of the specimen; data taken	
			from a figure.	
23	(T=298	K)	Thin films on substrates of single	Brodsky, M.H., et al.,
[27]	0.91	3.93	crystal sapphire disk; deposited by	1970
	0.93	3.89	rf sputtering of a 6 inch diameter in-	
	0.99	3.84	trinsic silicon cathode; substrates held	
	1.08	3.80	at or below room temperature and in an	
	1.15	3.76	argon atmosphere of 0.01 Torr during	
	1.30	3.72	deposition; specimen thickness 0.3 to	
	1.44	3.69	10 µm determined to within ±10%; speci-	
	1.66	3.66	mens annealed at 496 K for 2 hours;	
	1.82	3.64	refractive indices determined from the	
	2.18	3.61	transmission interference fringes and thickness of the specimens; data taken from a figure.	
24	(T=298	K)	Thin films on substrates of single	Brodsky, M.H., et al.,
[27]	0.82	3.97	crystal sapphire disk; deposited by	1970

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

[27] 0 0 1 1 1 1 1 2 25 [27] 0	0.86 0.92 0.98 1.03 1.13 1.26 1.40 1.58 1.76 1.96 2.21	3.92 3.85 3.80 3.76 3.72 3.67 3.64 3.61 3.60 3.58 3.57	rf sputtering of a 6 inch diameter intrinsic silicon cathode; substrates held at or below room temperature and in an argon atmosphere of 0.01 Torr during deposition; specimen thickness 0.3 to 10 µm determined to within ±10%; specimens annealed at 669 K for 2 hours; refractive indices determined from the transmission interference fringes and thickness of the specimen; data taken from a figure.	Brodsky, M.H., Title, R.S., Weiser, K., and Pettit, G.D., 1970
25 [27]	0.98 1.03 1.13 1.26 1.40 1.58 1.76 1.96 2.21	3.80 3.76 3.72 3.67 3.64 3.61 3.60 3.58	held at or below room temperature and in an argon atmosphere of 0.01 Torr during deposition; specimen thickness 0.3 to 10 µm determined to within ±10%; specimens annealed at 669 K for 2 hours; refractive indices determined from the transmission interference fringes and thickness of the specimen; data taken	Weiser, K., and
1 1 1 1 1 2 25 [27] 0	1.03 1.13 1.26 1.40 1.58 1.76 1.96 2.21	3.76 3.72 3.67 3.64 3.61 3.60 3.58	held at or below room temperature and in an argon atmosphere of 0.01 Torr during deposition; specimen thickness 0.3 to 10 µm determined to within ±10%; specimens annealed at 669 K for 2 hours; refractive indices determined from the transmission interference fringes and thickness of the specimen; data taken	
1 1 1 1 1 2 25 [27] 0	1.13 1.26 1.40 1.58 1.76 1.96 2.21	3.72 3.67 3.64 3.61 3.60 3.58	in an argon atmosphere of 0.01 Torr during deposition; specimen thickness 0.3 to 10 µm determined to within ±10%; specimens annealed at 669 K for 2 hours; refractive indices determined from the transmission interference fringes and thickness of the specimen; data taken	
1 1 1 1 2 25 [27] 0	1.26 1.40 1.58 1.76 1.96 2.21	3.67 3.64 3.61 3.60 3.58	during deposition; specimen thickness 0.3 to 10 µm determined to within ±10%; specimens annealed at 669 K for 2 hours; refractive indices determined from the transmission interference fringes and thickness of the specimen; data taken	
1 1 1 1 2 25 [27] 0	1.40 1.58 1.76 1.96 2.21 (T=298	3.64 3.61 3.60 3.58	0.3 to 10 µm determined to within ±10%; specimens annealed at 669 K for 2 hours; refractive indices determined from the transmission interference fringes and thickness of the specimen; data taken	
1 1 1 1 2 25 [27] 0	1.40 1.58 1.76 1.96 2.21 (T=298	3.64 3.61 3.60 3.58	specimens annealed at 669 K for 2 hours; refractive indices determined from the transmission interference fringes and thickness of the specimen; data taken	
25 [27] 0	1.58 1.76 1.96 2.21	3.61 3.60 3.58	refractive indices determined from the transmission interference fringes and thickness of the specimen; data taken	
25 [27] 0	1.76 1.96 2.21 (T=298	3.60 3.58	transmission interference fringes and thickness of the specimen; data taken	
25 [27] 0	1.96 2.21 (T=298	3.58	thickness of the specimen; data taken	
25 [27] 0	2.21 (T=298		•	
[27] 0			-	
		K)	Thin films on substrates of single	Brodeky, M.H., et al.,
C	0.81	3.83	crystal sapphire disk; deposited by	1970
	0.86	3.78	rf sputtering of a 6 inch diameter in-	
C	0.92	3.73	trinsic silicon cathode; substrates	
1	1.01	3.67	held at or below room temperature and	
1	1.12	3.63	in an argon atmosphere of 0.01 Torr	
1	1.30	3.59	during deposition; specimen thickness	
1	1.48	3.55	0.3 to 10 µm determined to within ±10%;	
1	1.68	3.52	specimens annealed at 773 K for 2 hours:	
1	1.95	3.50	refractive indices determined from the	
2	2.14	3.49	transmission interference fringes and	
			thickness of the specimen; data taken from a figure.	
26	(T=298	K)	Thin films on substrates of single	Brodsky, M.H., et al.,
[27] 0	0.718	3.56	crystal sapphire disk; deposited by rf	1970
C	0.746	3.51	sputtering of a 6 inch diameter intrinsic	
C	0.808	3.46	silicon cathode; substrates held at or	
C	0.873	3.41	below room temperature and in an argon	
C	0.947	3.38	atmosphere of 0.01 Torr during deposi-	
3	1.016	3.35	tion; specimen thickness 0.3 to 10 µm	
1	1.161	3.31	determined to within ±10%; specimen	
1	1.330	3.28	annealed at 1222 K for 2 hours; refrac-	
1	1.558	3.25	tive indices determined from the trans-	
1	1.816	3.24	mission interference fringes and	
2	2.112	3.22	thickness of the specimen; data taken	
2	2.451	3.21	from a figure.	
27	(T=297		Silicon wedge specimen; cut from a	Primak, W., 1971
	1.2	3.5196	single crystal rod obtained from Merck	
	1.4	3.4900	and Co.; ultra-high purity p-type; ρ =	
1	1.6	3.4713	1200 Ω -cm; orientation <111> along the	
1	1.8	3.4583	rod axis and perpendicular to one face	
2	2.0	3.4492	of the wedge; wedge angle 11°40'35";	
			wedge faces 22 mm long by 12.7 mm high;	
			refractive indices determined by auto-	
			collimation method; data taken from	
			a table.	
28	(T=297		Silicon wedge specimen; cut from a	Primak, W., 1971
	1.144	3.5295	single crystal rod obtained from Merck	
	1.2	3.5189	and Co.; ultra-high purity p-type; ρ =	
3	1.372	3.5007	1200 Ω -cm; orientation <111> along the	
J	1.4	3.4841	rod axis and perpendicular to one face	
]	1.532	3.4784	of the wedge; wedge angle 11°40'35";	

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
28(cont.) [15]	1.696	3.4644	wedge faces 22 mm long by 12.7 mm high; refractive indices determined by auto-collimation method; data taken from a table.	Primak, W., 1971
29 [15]	(T=297 1.12 1.2 1.4 1.6 1.8 2.0 2.16	K) 3.5361 3.5193 3.4886 3.4706 3.4573 3.4487 3.4427	Silicon wedge specimen; cut from a single crystal rod obtained from Merck and Co.; ultra-high purity p-type; ρ = 1200 Ω -cm; orientation <111> along the rod axis and perpendicular to one face of the wedge; wedge angle 11°40'35"; wedge faces 22 mm long by 12.7 mm high; refractive indices determined by auto-collimation method; data taken from a table.	Primak, W., 1971
30 [28]	(T=298 0.5461	K) 4.08	Single crystal: surface polished with diamond dust; refractive index determined by the method of ellipsometry.	Shevchenko, G.K., Rachkovskii, R.R., Kol'tsov, S.I., and Aleskovskii, V.B., 1972.
31 [5]	(T=10 2.554 2.652 2.732 2.856 2.958 3.090 4.120 5.190 8.230 10.270	4 K) 3.41172 3.40896 3.40754 3.40611 3.40475 3.40365 3.39695 3.39388 3.39064 3.38989	Good optical grade silicon samples; supplied by Exotic Materials, Inc.; prism specimen measured with a modified minimum deviation method; data taken from a table.	Icenogle, H.W., Platt, B.C., and Wolfe, W.C., 1976
32 [5]	(T=20 2.554 2.652 2.732 2.856 2.958 3.090 4.120 5.190 8.230 10.270	2 K) 3.42184 3.42006 3.41843 3.41776 3.41587 3.41483 3.40800 3.40496 3.40169 3.40084	Good optical grade silicon samples; supplied by Exotic Materials, Inc.; prism specimen measured with a modified minimum deviation method; data taken from a figure.	Icenogle, H.W., et al., 1976
33 [5]	(T=27 2.554 2.652 2.732 2.856 2.958 3.090 4.120 5.190 8.230 10.270	5 K) 3.43472 3.43264 3.43097 3.42971 3.42836 3.42723 3.42642 3.41649 3.41314 3.41226	Good optical grade silicon samples; supplied by Exotic Materials, Inc.; prism specimen measured with a modified minimum deviation method; data taken from a table.	lcenogle, H.W., et al.,

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
34	(T=29	6 K)	Good optical grade silicon samples;	Icenogle, H.W.,
[5]	2.554	3.43681	supplied by Exotic Materials, Inc.;	Platt, B.C., and
	2.652	3.43529	prism specimen measured with a modified	Wolfe, W.C., 1976
	2.732	3.43367	minimum deviation method; data taken	
	2.856	3.43224	from a table.	
	2.958	3.43102		
	3.090	3.42987		
	4.120	3.42304		
	5.190	3.41974		
	8.230	3.41629		
	10.270	3.41551		
35	(T=298	K)	Thin films of thicknesses 0.06-0.350	Thutupalli, G.K.M. and
[29]	0.30	2.92	μm; deposited <u>o</u> n quartz substrate in	Tomlin, S.G., 1977
	0.32	3.18	a vacuum of 10 ⁻⁶ Torr; evaporation	
	0.35	3.54	produced by electron beam bombardment;	
	0.39	3.90	rate of deposition 0.0002-0.001 µm per	
	0.45	4.26	second; substrate kept at 548 K during	
	0.51	4.51	deposition; refractive index determined	
	0.58	4.60	from normal incident reflectance and	
	0.61	4.50	transmittance measurements; data taken	
	0.66 0.74	4.34 4.20	from a figure.	
	0.82	4.04		
	0.93	3.91	•	
	1.12	3.80		
	1.40	3.71		
	1.61	3.68		
	1.98	3.67		
36	(T=298	к)	Thin films of thicknesses 0.06-0.350	Thutupalli, G.K.M. and
[29]	0.52	4.57	μm; deposited on quartz substrate in	Tomlin, S.G., 1977
	0.55	4.44	a vacuum of 10 ⁻⁶ Torr; evaporation	,,,
	0.60	4.27	produced by electron beam bombardment;	
	0.65	4.13	rate of deposition 0.0002-0.001 µm per	
	0.75	3.97	second; substrate kept at 873 K during	
	0.86	3.84	deposition; refractive index determined	
	1.04	3.74	from normal incident reflectance and	
	1.32	3.65	transmittance measurements; data taken	
	1.56	3.62	from a figure.	
	1.89	3.58		
37	(T=298	K)	Thin films of thicknesses 0.06-0.350	Thutupalli, G.K.M. and
[29]	0.43	4.86	μm; deposited on quartz substrate in	Tomlin, S.G., 1977
	0.46	4.67	a vacuum of 10^{-6} Torr; evaporation	
	0.52	4.31	produced by electron beam bombardment;	
	0.58	4.07	rate of deposition 0.0002-0.001 μm per	
	0.66	3.87	second; substrate kept at 1048 K during	
	0.76	3.71	deposition; refractive index determined	
	0.88	3.61	from normal incident reflectance and	
	1.10	3.54	transmittance measurements; data taken	
	1.36	3.50	from a figure.	
	1.67	3.48		
	1.89	3.47		
38	(T=298		Thin films of thicknesses 0.06-0.350	Thutupalli, G.K.M. and
[29]	0.53	4.60	μm; deposited on quartz substrate in	Tomlin, S.G., 1977

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

[Ref.]	λ	n	Specifications and Remarks	Author(s), Year
38(cont.)	0.56	4.44	a vacuum of 10^{-6} Torr; evaporation	Thutupalli, G.K.M. and
[29]	0.64	4.23	produced by electron beam bombardment;	Tomlin, S.G., 1977
	0.74	4.00	rate of deposition 0.0002-0.001 µm per	
	0.90	3.84	second; substrate kept at 548 K during	
	1.04	3.77	deposition and then annealed at 873 K	
	1.24	3.68	for 3 hours; refractive index deter-	
	1.50	3.65	mined from normal incident reflectance	
	1.85	3.61	and transmittance measurements; data	
			taken from a figure.	
39	(T=298	K)	Single crystal; cut at <111> face and	Thutupalli, G.K.M. and
[29]	0.30	4.16	polished with successively finer grades	Tomlin, S.G., 1977
	0.30	4.52	of diamond abrasives and finally with	
	0.30	4.85	an Al ₂ O ₃ polishing powder on a beeswax	
	0.31	5.21	lap; refractive index determined from	
	0.32	5.43	normal incident reflectance and trans-	
*	0.33	5.65	mittance measurements; data taken from	
	0.34	5.94	a figure.	
	0.35	6.30	•	
	0.36	6.55		
	0.37	6.70		
	0.38	6.52		
	0.39	6.08		
	0.40	5.68		
	0.41	5.32		
	0.44	4.91		
	0.48	4.59		
	0.52	4.29		
	0.58	4.04		
	0.72	3.82		
	0.91	3.64		
	1.10	3.53		
	1.43	3.45		
	2.06	3.38		
	3.10	3.38		
	6.96	3.34		
40	(T=299		Single crystal; obtained from the	Villa, J.L., 1972
	1.3570	3.5151	Raytheon Co.; prism specimen of 15°38'	
	1.3673	3.5139	29" apex angle; refractive index deter-	
	1.3951	3.5107	mined by minimum deviation method;	
	1.5295	3.4976	reported uncertainty 2×10^{-4} ; the	
	1.6606	3.4879	values in this set are much higher than	
	1.7092	3.4849	the author's previous measure (data	
	1.8131	3.4792	set 3) for a sample obtained from	
	1.9701	3.4724	Texas Instrument Co.; impurities in	
	2.1526	3.4664	Raytheon sample may be responsible to	
	2.3254	3.4618	such discrepancies; data extracted	
	2.4374	3.4596	from a table.	
	2.7144	3.4545		
	3.00	3.4509		
	3.3033	3.4488		
	3.4188	3.4478		
	3.50	3.4475		
	4.00	3.4448		
	4.258	3.4436		
	4.50	3.4428		

TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
40(cont.)	5.00	3.4415		Villa, J.L., 1972
[16]	5.50	3.4405		, ,
	6.00	3.4397		
	6.50	3.4391		
	7.00	3.4387		
	7.50	3.4383		
	8.00	3.4380		
	8.50	3.4377		
	10.00	3.4375		
	10.50	3.4373		
	11.04	3.4371		

TABLE A-2. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) [Temperature, T, K; Wavelength, λ , μ m; Refractive Index, n]

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
1		2.554 µm)	Good optical grade silicon samples;	Icenogle, H.W.,
[5]	103	3.41279	supplied by Exotic Materials, Inc.;	Platt, B.C., and
	110	3.41302	prism specimen measured with a modified	Wolfe, W.L., 1976
	120	3.41374	minimum deviation method; data taken	
	131	3.41471	from a table.	
	137	3.41534		
	144	3.41616		
	152	3.41695		
	160	3.41789		
	167	3.41868		
	175	3.41967		
	182	3.42074		
	189	3.42158		
	193	3.42216		
	200	3.42303		
	205	3.42375		
	210	3.42448		
	220	3.42603		
	224	3.42668		
	228	3.42730		
	235 244	3.42836 3.42961		
	251	3.43081		
	255	3.43181		
	261	3.41889		
	267	3.43331		
	274	3.43430		
	277	3.43492		
	282	3.43576		
	286	3.43633		
2	(λ=	2.732 µm)	Good optical grade silicon samples;	Icenogle, H.W., et al.,
[5]	97	3.40857	supplied by Exotic Materials, Inc.;	1976
	106	3.40923	prism specimen measured with a modified	
	116	3.40999	minimum deviation method; data taken	
	126	3.41084	from a table.	
	133	3.41234		
	143	3.41256		
	150	3.41317		
	159	3.41429		
	165	3.41502		
	169	3.41551		
	177	3.41656		
	182	3.41723		
	190	3.41833		
	197	3.41825		
	203	3.42006		
	211	3.42118		
	217	3.42197		
	222	3.42265		
	234	3.42422		
	241	3.42523		
	245	3.42600		
	251	3.42682		
	255	3.42762		
	262 267	3.42863		
	267	3.42949		

TABLE A-2. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

Data Set [Ref.]	Т	n	Specifications and Remarks	Author(s), Year
2(cont.)	272	3.43037		Icenogle, H.W.,
[5]	277	3.43112		Platt, B.C., and
	282	3.43182		Wolfe, W.L., 1976
	286	3.43251		
3	(λ=	5.190 μm)	Good optical grade silicon samples;	Icenogle, H.W., et al.,
[5]	99	3.39330	supplied by Exotic Materials, Inc.;	1976
	106	3.39388	prism specimen measured with a modified	
	114	3.39441	minimum deviation method; data taken	
	120	3.39497	from a table.	
	127	3.39554		
	133	3.39608		
	140	3.39679		
	147 155	3.39757		
	160	3.39838 3.39898		
	167	3.39981		
	171	3.40037		
	180	3.40144		
	186	3.40213		
	192	3.40288		
	199	3.40382		
	205	3.40455		
	213	3.40574		
	219	3.40657		
	227	3.40760		
	233	3.40843		
	239	3.40931		
	243 250	3.41013 3.41104		
	262	3.41280		
	268	3.41380		
	273	3.41449		
	279	3.41529		
	285	3.41621		
4	(λ=	10.27 μm)	Good optical grade silicon samples;	Icenogle, H.W., et al.,
[5]	99	3.39109	supplied by Exotic Materials, Inc.;	1976
	108	3.39185	prism specimen measured with a modified	
	114	3.39273	minimum deviation method; data taken	
	124	3.39313	from a table.	
	131	3.39374		
	142 148	3.39484 3.39555		
	155	3.39629		
	161	3.39693		
	170	3.39796		
	177	3.39884		
	185	3.39973		
	194	3.40099		
	204	3.40229		
	210	3.40307		
	216	3.40389		
	223	3.40516		
	230	3.40572		
	236	3.40667 3.40752		
	242	3.40752		

TABLE A-2. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

Data Set [Ref.]	Т	n	Specifications and Remarks	Author(s), Year
4(cont.)	248	3.40838		Icenogle, H.W.,
[5]	253	3.40905		Platt, B.C., and
	260	3.41021		Wolfe, W.L., 1976
	281	3.41088		
	271 276	3.41186 3.41270		
	280	3.41337		
	283	3.41380		
	287	3.41427		
5	(λ=1.2	259 μm)	Single crystal; p-type; ρ = 380 ohm-cm;	Lukes, F., 1959
[4]	109.6	3.478	prism specimen of 17°51.4' apex angle;	
	133.1	3.481	refractive indices for the spectral line	
	150.8	3.484	$\lambda = 1.259 \mu m$ at various temperatures	
	166.4	3.485	determined by the minimum deviation	
	186.0	3.488	method; reported error in n ∿ 0.0004;	
	201.7	3.491	data read from a figure.	
	213.5 227.2	3.493 3.495		
	235.0	3.497		
	250.7	3.499		
	272.2	3.504		
	295.7	3.510		
	327.1	3.517		
	356.5	3.523		
	368.2	3.526		
	387.8	3.529		
	413.3 440.7	3.533 3.539		
	452.4	3.542		
	466.1	3.546		
	493.6	3.551		
	505.3	3.553		
	534.7	3.561		
	554.3	3.565		
	573.9	3.570		
	613.0	3.580		
	628.7	3.582		
	646.3	3.587		
6		407 μm)	Single crystal; p-type; ρ = 380 ohm-cm;	Lukes, F., 1959
[4]	109.7 143.0	3.460 3.465	prism specimen of 17°51.4" apex angle;	
	160.6	3.467	refractive indices for the wavelength $\lambda = 1.407 \mu m$ at various temperatures	
	172.4	3.468	determined by the minimum deviation	
	188.1	3.470	method; reported error in n \(^0.0004;\)	
	207.7	3.473	data read from a figure.	
	221.4	3.476	C	
	235.1	3.478		
	246.9	3.481		
	258.6	3.483		
	268.4	3.485		
	278.2	3.486		
	286.0	3.488		
	288.0 299.8	3.489 3.490		
	331.1	3.490		
	つうエ・エ	3.490		

TABLE A-2. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

6(cont.) 356. [4] 360. 372. 397. 407. 421. 434. 458. 478. 489. 497. 505. 517. 532. 544. 554. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 636. 636.	3.502 3.505 7. 3.509 3.512 3.514 3.517 3.523 3.523 3.532 3.531 3.532 4. 3.532 4. 3.532 4. 3.532 4. 3.535 8. 3.532 4. 3.542 4. 3.545 1. 3.549 9. 3.550 9. 3.5		Lukes, F., 1959
[4] 360. 372. 397. 407. 421. 434. 458. 478. 489. 497. 505. 517. 532. 544. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 636.	3.502 3.505 7. 3.509 3.512 3.514 3.517 3.523 3.523 3.532 3.531 3.532 4. 3.532 4. 3.532 4. 3.532 4. 3.535 8. 3.532 4. 3.542 4. 3.545 1. 3.549 9. 3.550 9. 3.5		
397. 407. 421. 434. 458. 489. 497. 505. 517. 532. 544. 554. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 636.	7 3.509 5 2.512 2 3.514 3 3.517 4 3.523 3 .529 7 3.531 3 .532 3 .532 3 .532 3 .535 8 3.532 4 3.545 1 3.545 1 3.547 1 3.549 2 3.550 3 .550 3 .551 3 .555 3		
407. 421. 434. 458. 478. 489. 497. 505. 517. 532. 544. 556. 568. 577. 581. 593. 603. 609. 624. 636. 636. 636.	5		
421. 434. 458. 478. 489. 497. 505. 517. 532. 544. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 636.	2 3.514 3 .517 4 3.523 3 .529 7 3.531 3 .532 4 3.532 2 3.535 8 3.539 6 3.542 4 3.545 1 3.547 1 3.549 3 .550 3 .550 3 .551 3 .555 3 .5		
421. 434. 458. 478. 489. 497. 505. 517. 532. 544. 554. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 636.	2 3.514 3 .517 4 3.523 3 .529 7 3.531 3 .532 4 3.532 2 3.535 8 3.539 6 3.542 4 3.545 1 3.547 1 3.549 3 .550 3 .550 3 .551 3 .555 3 .5		
434. 458. 478. 489. 497. 505. 517. 532. 544. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 636.	3.517 4. 3.523 3.529 3.531 3.532 4. 3.532 2. 3.535 3.532 2. 3.535 3.532 4. 3.542 4. 3.545 1. 3.547 1. 3.549 3. 3.550 3. 3.551 3. 3.556 3. 3.556 3. 558		
458. 478. 489. 497. 505. 517. 532. 544. 554. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 636.	4 3.523 3.529 7 3.531 3.532 4 3.535 3 3.539 3 3.542 4 3.545 1 3.547 1 3.549 3 3.550 3 3.551 3 3.554 3 3.556 3 3.556 3 3.558		
478. 489. 497. 505. 517. 532. 544. 554. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 636.	3.529 7. 3.531 3.532 4. 3.532 2. 3.535 3.539 6. 3.542 4. 3.545 1. 3.547 1. 3.549 9. 3.550 9. 3.550 9. 3.551 1. 3.554 1. 3.556 2. 3.558		
489. 497. 505. 517. 532. 544. 554. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 636.	7 3.531 3.532 4 3.532 2 3.535 3 3.539 3 3.542 4 3.545 1 3.547 1 3.549 9 3.550 3 3.551 3 3.554 4 3.556 2 3.558		
497. 505. 517. 532. 544. 554. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636.	3.532 4.3.532 2.3.535 3.539 3.542 4.3.545 1.3.547 1.3.549 2.3.550 3.551 3.551 3.554 4.3.556 2.3.558		
505. 517. 532. 544. 554. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 636.	4 3.532 2 3.535 3 3.539 6 3.542 4 3.545 1 3.547 9 3.550 8 3.551 6 3.554 4 3.556 2 3.558		
517. 532. 544. 554. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636.	2 3.535 3.539 5 3.542 4 3.545 1 3.547 1 3.549 9 3.550 8 3.551 3 3.554 4 3.556 2 3.558		
532. 544. 554. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 648.	3 3.539 3 3.542 4 3.545 1 3.547 1 3.549 3 3.550 3 3.551 3 3.554 4 3.556 2 3.558		
544. 554. 566. 568. 577. 581. 593. 603. 609. 624. 636. 636. 648.	3.542 4. 3.545 1. 3.547 1. 3.549 3.550 3.5551 3.5554 4. 3.556 2. 3.558		
554. 566. 568. 577. 581. 593. 603. 624. 636. 636. 648.	4 3.545 1 3.547 1 3.549 9 3.550 8 3.551 6 3.554 4 3.556 2 3.558		
566. 568. 577. 581. 593. 603. 609. 624. 636. 636.	1 3.547 1 3.549 9 3.550 8 3.551 6 3.554 4 3.556 2 3.558		
568. 577. 581. 593. 603. 609. 624. 636. 636.	1 3.549 9 3.550 8 3.551 6 3.554 4 3.556 2 3.558		
577. 581. 593. 603. 609. 624. 636. 636.	3.550 3.551 5.3554 4.3.556 2.3.558		
581. 593. 603. 609. 624. 636. 636.	3 3.551 6 3.554 4 3.556 2 3.558		
593. 603. 609. 624. 636. 636.	3.554 4 3.556 2 3.558		
603. 609. 624. 636. 636.	4 3.556 2 3.558		
609. 624. 636. 636. 648.	2 3.558		
624. 636. 636. 648.			
636. 636. 648.	3.562		
636. 648.			
648.	5 3.564		
648.			
658.			
681.			
691.			
695.			
709.			
713.			
722.			
728.			
742.			
744.	3.593		
7 (λ=	1.564 µm)	Single crystal; p-type; p = 380 ohm-cm;	Lukes, F., 1959
[4] 107.		prism specimen of 17°51.4' apex angle;	
113.		refractive indices for the wavelength	
129.	4 3.448	$\lambda = 1.564 \mu \text{m}$ at various temperatures	
141.		determined by the minimum deviation	
152.	9 3.451	method; reported error in $n \sim 0.0004$;	
160.	7 3.453	data read from a figure.	
178.			
192.			
207.			
219.			
229.			
241.			
252.			
272.			
280.			
299.			
311. 327.			

TABLE A-2. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
7(cont.)	344.9	3.483		Lukes, F., 1959
[4]	352.7	3.485		
	368.4	3.488		
	374.3	3.490		
	388.0	3.492		
	399.7	3.495		
	417.4	3.498		
	423.2	3.500		
	431.1	3.502		
	438.9	3.503		
	446.7	3.504		
	458.5	3.507		
	468.3	3.509		
	476.1	3.511		
	491.8	3.514		
	501.6	3.516		
	511.4	3.519		
	529.0	3.522		
	536.8	3.525		
	546.6	3.526		
	554.5	3.530		
	564.3 574.0	3.532 3.534		
	583.8	3.537		
	607.3	3.542		
	621.0	3.545		
	632.8	3.547		
	644.6	3.549		
	658.3	3.554		
	670.0	3.555		
	683.7	3.559		
	695.5	3.561		
	709.2	3.566		
	724.9	3.570		
	736.6	3.573		
	750.3	3.576		
8	(\ \ - 2.4	+09 μm)	Single crystal; p-type; ρ = 380 ohm-cm;	Lukes, F., 1960
[14]	111.6	3.412	prism specimen of 17°51.4' apex angle;	Hakes, 1., 1700
(~.)	120.7	3.415	refractive indices for the spectral line	
	144.8	3.417	$\lambda = 2.409 \ \mu m$ at various temperatures	
	156.9	3.418	determined by the minimum deviation	
	187.1	3.421	method; reported error in n ∿ 0.0004;	
	199.2	3.424	data read from a figure.	
	211.3	3.426	22010.	
	229.4	3,428		
	238.4	3.430		
	247.5	3.431		
	262.6	3:433		
	265.6	3.435	•	
	274.7	3.436		
	280.7	3.437		
	286.8	3.438		
	289.8	3.440		
	295.8	3.440		
	307.9	3.443		
	323.0	3.445		

TABLE A-2. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
8(cont.)	335.1	3.446		Lukes, F., 1960
[14]	341.1	3.449		
	353.2	3.452		
	371.3	3.453		
	380.4	3.455		
	395.5	3.458		
	407.6	3.460		
	419.7	3.464		
	431.8	3.465		
	446.9	3.468		
	456.0	3.470		
	462.0	3.472		
	477.1			
		3.475		
	480.2	3.478		
	501.3	3.480		
	516.4	3.483		
	528.5	3.485		
	540.6	3.488		
	546.6	3.489		
	561.7	3.492		
	567.8	3.495		
	585.9	3.498		
	598.0	3.500		
	610.1	3.502		
	622.2	3.506		
	628.2	3.507		
9	(λ=5.1	.56 µm)	Single crystal; p-type; $\rho = 380$ ohm-cm;	Lukes, F., 1960
[14]	298.6	3.420	prism specimen of 17°51.4' apex angle;	
	310.7	3.423	refractive indices for the spectral line	
	316.7	3.423	$\lambda = 5.156 \ \mu m$ at various temperatures	
	334.9	3.426	determined by the minimum deviation	
	337.9	3.427	method; reported error in n ~ 0.0004;	
	347.0	3.429	data read from a figure.	
	359.0	3.430	data read from a rigure.	
	377.2	3.433		
	401.3	3.436		
	425.5	3.444		
	440.6	3.445		
	446.7	3.448		
	455.7	3.450		
	479.9	3.453		
	495.0	3.455		
	510.1	3.458		
	516.2	3.461		
	528.2	3.462		
	543.4	3.467		
	564.5	3.472		
	573.6	3.473		
	585.7	3.475		
	594.7	3.476		
	621.9	3.481		
10	()-0 4	5 21m	Single crystal; $\rho = 15 \Omega$ -cm; plane-	Sato, T., 1967
10	(λ=0.4			
[30]	266	4.74	parallel disk specimens of 23 mm in	
	373 466	4.81 4.91	diameter; optical polished; emissivities directly measured by comparison of the	

TABLE A-2. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
1.0(cont.) [30]	568 675 760 875 968	4.96 5.02 5.14 5.18 5.32	emission of the specimen and that of a V-shape cavity of graphite with the emissivity of about 0.97; refractive index determined using the expression: emissivity = $4n/(n+1)^2$; data taken from a figure.	Sato, T., 1967
11 [30]	(λ=0.55 275 368 466 564 675 773 866 977	µm) 4.14 4.22 4.23 4.34 4.40 4.42 4.51 4.55	Single crystal; $\rho=15~\Omega-\text{cm}$; plane-parallel disk specimens of 23 mm in diameter; optical polished; emissivities directly measured by comparison of the emission of the specimen and that of a V-shape cavity of graphite with the emissivity of about 0.97; refractive index determined using the expression: emissivity = $4n/(n+1)^2$; data taken from a figure.	Sato, T., 1967
12 [30]	(λ=0.65 275 386 475 577 693 791 880 995	um) 4.03 4.07 4.12 4.23 4.24 4.30 4.40 4.42	Single crystal; $\rho=15~\Omega-\text{cm}$; plane-parallel disk specimens of 23 mm in diameter; optical polished; emissivities directly measured by comparison of the emission of the specimen and that of a V-shape cavity of graphite with the emissivity of about 0.97; refractive index determined using the expression: emissivity = 4n/(n+1)^2 ; data taken from a figure.	Sato, T., 1967
13 [30]	(λ=0.90 271 368 475 568 675 768 871 973	um) 3.75 3.83 3.83 3.92 3.91 4.00 4.10	Single crystal; $\rho = 15~\Omega$ -cm; plane-parallel disk specimens of 23 mm in diameter; optical polished; emissivities directly measured by comparison of the emission of the specimen and that of a V-shape cavity of graphite with the emissivity of about 0.97; refractive index determined using the expression: emissivity = $4n/(n+1)^2$; data taken from a figure.	Sato, T., 1967
14 [30]	(λ=1.56 280 377 484 573 671 782 871 977	μm) 3.55 3.61 3.60 3.68 3.72 3.69 3.79 3.77	Single crystal; $\rho=15~\Omega-\text{cm}$; plane-parallel disk specimens of 23 mm in diameter; optical polished; emissivities directly measured by comparison of the emission of the specimen and that of a V-shape cavity of graphite with the emissivity of about 0.97; refractive index determined using the expression: emissivity = $4n/(n+1)^2$; data taken from a figure.	Sato, T., 1967
15 [30]	(λ=2.00 284 382 488 573 675	μm) 3.47 3.48 3.52 3.59 3.56	Single crystal; $\rho = 15$ k-cm; plane-parallel disk specimens of 23 mm in diameter; optical polished; emissivities directly measured by comparison of the emission of the specimen and that of a V-shape cavity of graphite with the	Sato, T., 1967

TABLE A-2. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

Data Set [Ref.]	Т	n ·	Specifications and Remarks	Author(s), Year
15(cont.) [30]	782 871 977	3.59 3.65 3.64	emissivity of about 0.97; refractive index determined using the expression: emissivity = $4n/(n+1)^2$; data taken from a figure.	Sato, T., 1967

TABLE A-3. EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF SILICON (Wavelength Dependence)

[Temperature, T, K; Wavelength, λ , μm ; Temperature Derivative of Refractive Index, dn/dT, $10^{-4}K^{-1}$]

Data Set [Ref.]	λ	dn/dT	Specifications and Remarks	Author(s), Year
1	(T=30	00 к)	Single crystal; p-type; ρ = 380 Ω -cm;	Lukes, F., 1959
[4]	1.130	2.17	prism specimen of 17°51.4' apex angle;	- '
	1.158	2.12	refractive indices at various tempera-	
	1.192	2.09	tures determined using the minimum	
	1.260	2.06	deviation method and dn/dT at 300 K	
	1.327	2.04	obtained; data read from a figure.	
	1.457	1.97		
	1.589	1.95		
	1.734	1.91		
	1.781	1.88		
2	(T=30	00 к)	Single crystal; p-type; $\rho = 380 \Omega - cm$;	Lukes, F., 1960
[14]	1.146	2.18	prism specimen of 17°51.4' apex angle;	, ,
	1.162	2.13	refractive indices at various tempera-	
	1.207	2.10	tures determined using the minimum	
	1.238	2.07	deviation method and dn/dT at 300 K	
	1.328	2.04	obtained; data read from a figure.	
	1.389	1.98		
	1.554	1.96		
	1.720	1.88		
	1.766	1.84		
	2.080	1.80		
	2.393	1.80		
	3.410	1.74		
	3.829	1.68		
	5.144	1.60		

TABLE A-4. EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF SILICON (Temperature Dependence)

[Temperature, T, K; Wavelength, λ , μ m; Temperature Derivative of Refractive Index, dn/dT, $10^{-4}K^{-1}$]

Data Set [Ref.]	Т	dn/dT	Specifications and Remarks	Author(s), Year
1 [4]	(λ=1.2 117.8 170.9 216.6 266.3 315.9 415.4 522.4	1.01 1.60 1.84 1.98 2.09 2.22 2.37	Single crystal; p-type; ρ = 380 Ω -cm; prism specimen of 17°51.4' apex angle; refractive indices for the line 1.259 μ m at various temperatures determined using the minimum deviation method and dn/dT obtained; data read from a figure.	Lukes, F., 1959
2 [4]	$(\lambda=1.5)$ 117.7 167.2 216.8 266.4 319.9 419.2 522.5 621.9 721.4	1.07 1.46 1.63 1.83 1.95 2.14 2.29 2.39 2.44	Single crystal; p-type; ρ = 380 Ω -cm; prism specimen of 17°51.4' apex angle; refractive indices for the line λ = 1.564 μ m at various temperatures determined using the minimum deviation method and dn/dT obtained; data read from a figure.	Lukes, F., 1959
3 [14]	$(\lambda=1.4)$ 115.7 127.6 154.2 184.0 210.7 252.3 290.9 371.2 421.7 466.3 516.9 567.4 609.0 629.9 665.5 719.1 736.9	0.95 1.09 1.41 1.54 1.77 1.92 2.06 2.06 2.15 2.20 2.29 2.32 2.33 2.32 2.30 2.30 2.30	Single crystal; p-type; ρ = 380 Ω -cm; prism specimen of 17°51.4' apex angle; refractive indices for wavelength λ = 1.407 μ m at various temperatures determined using the minimum deviation method and dn/dT obtained; data read from a figure.	Lukes, F., 1960
4 [14]	$(\lambda=2.4)$ 115.7 127.6 157.3 184.0 207.7 249.3 290.9 308.8 368.2 415.8 466.4 516.9 567.4	109 µm) 0.78 0.97 1.22 1.42 1.57 1.78 1.86 1.88 1.94 1.98 2.04 2.17	Single crystal; p-type; ρ = 380 Ω -cm; prism specimen of 17°51.4' apex angle; refractive indices for the line λ = 2.409 μ m at various temperatures determined using the minimum deviation method and dn/dT obtained; data read from a figure.	Lukes, F., 1960

TABLE A-4. EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF SILICON (Temperature Dependence) (continued)

Data Set [Ref.]	T	dn/dT	Specifications and Remarks	Autho	r(s), Year
5	(λ=3.8	26 μm)	Single crystal; p-type; ρ = 380 Ω -cm;	Lukes, F	., 1960
[14]	311.8	1.74	prism specimen of 17°51.4' apex angle;		
	371.2	1.83	refractive indices at various tempera-		
	418.8	1.95	tures determined using the minimum		
	466.4	2.00	deviation method and dn/dT obtained;		
	519.9	2.03	data read from a figure.		
	567.5	2.06			
	609.1	2.09			
6	(λ=5.1	.56 µm)	Single crystal; p-type; $\rho = 380 \Omega - cm$;	Lukes, F	., 1960
[14]	308.8	1.62	prism specimen of 17°51.4' apex angle;		
	368.3	1.74	refractive indices at various tempera-		
	418.8	1.86	tures determined using the minimum		
	469.4	1.94	deviation method and dn/dT obtained;		
	516.9	1.98	data read from a figure.		
	567.5	1.95	3		
	606.2	1.85			

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) [Temperature, T, K; Wavelength, λ , μm ; Refractive Index, n]

ata Set [Ref.]	λ	r.	Specifications and Remarks	Author(s), Year
1	(T=29	8 K)	Thin film specimens of thickness	Brattain, W.H., and
[41]	0.36	2.03	ranged from 0.04 to 1.0 µm; refrac-	Briggs, H.B., 1949
	0.43	2.43	tive index determined from the in-	
	0.50	3.40	terference fringe order of the trans-	
	0.68	5.15	mitted radiation and the thickness	
	0.78	5.22	of the specimen; data extracted from	
	0.88	5.17	a figure.	
	0.98	5.20	a liguie.	
	1.0			
		4.92		
	1.2	4.84		
	1.4	4.79		
	1.5	4.61		
	1.5	4.74		
	1.6	4.61		
	1.6	4.74		
	1.8	4.66		
	1.8	4.56		
	2.0	4.64		
	2.2	4.46		
	2.6	4.46		
	3.1	4.43		
	3.9	4.38		
	5.2	4.33		
	7.6	4.30		
2	(T=2	98 K)	Sample from a standard high back-	Briggs, H.B., 1949
[12]	1.80	4.143	voltage melt with impurity content	
	1.85	4.135	estimated at less than 0.01%; pris-	
	1.90	4.129	matic specimen of 17°6'30" angle;	
	2.00	4.116	index of refraction measured by	
	2.10	4.104	method of minimum deviation; data	
	2.20	4.092	extracted from a table.	
	2.30	4.085	extracted from a table.	
	2.40	4.078		
	2.50	4.072		
	2.60	4.068		
3	(T=3	00 K)	Crystal; obtained from RCA Labora-	Simon, I., 1951.
[17]	3.842	2.669	tories; p∿l Ω-cm; polished specimen	
	4.147	2.648	of 0.89 mm thick; reflectances at	
	4.518	2.698	20 and 70 degree incidence angles	
	4.715	2.750	obtained; refractive indices obtained	
	6.209	2.993	by a graphical analysis; data taken	
	7.158	3.403	from a figure.	
	8.202	3.652	IIOII a IIguie.	
	9.735	3.954		
	12.168	3.968		
	13.983	4.128		
4	(T=7	7 K)	Pure crystal; thin plate specimen of	Collins, R.J., 1953
[42]	8.66	3.77	227 um thick; interference fringe of	
	9.4	3.81	transmitted radiation observed and	
	10.2	3.81	refractive index determined; data	
			·	
	11.22 12.35	3.81 3.82	extracted from a table.	

J. Phys. Chem. Ref. Data, Vol. 9, No. 3, 1980

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

[Ref.]	λ .	n	Specifications and Remarks	Author(s), Year
5	(T=30	•	Pure crystal; thin plate specimen of	Collins, R.J., 1953
[42]	8.66	3.92	227 µm thick; interference fringe of	
	9.4	3.90	transmitted radiation observed and	
	10.2	3.93	refractive index determined; data	
	11.22	3.92	extracted from a table.	
	12.35	3.93		
6		97.3 K)	Germanium crystal; grown at the	Rank, D.H.,
[35]	2.00	4.1254	General Electric Co., Electronic	Bennett, H.E., and
	2.10	4.1145	Lab., Electronic Park, Syracuse, NY;	Cronemeyer, D.C., 1954
	2.30	4.0980	plane parallel plate specimen of	
	2.40	4.0918	3.0575 mm thick and 28 mm clear	
			aperature; interference fringe order	
			observed and vacuum refractive in-	
			dex of the plate determined; data	
			taken from a table.	
7		9/ K)	Single crystal; ρ=56 Ω-cm; plate	Oswald, F. and
[43]	1.8	3.95	specimen of about 7 mm thick; refrac-	Schade, R., 1954
	to		tive index deduced from reflectance	
	15.2		and transmittance measurements; re-	
			fractive index in the wavelength	
			region between 1.8 and 15.2 μm being	
			a constant 3.95.	
8		97 K)	Single crystals, n-type with majority	Spitzer, W.C. and
[44]	2.811	4.027	carrier concentration N = 3.9×10^{19}	Fan, H.Y., 1957
	3.217	4.027	cm ⁻³ ; refractive index derived from	*
	3.623	4.027	reflectivity and transmission mea-	
	4.029	4.014	surements; data taken from a figure.	
	7.139	3.959	•	
	10.926	3.662		
	12.008	3.595		
	12.820	3.514		
	13.361	3.500		
	13.902	3.432		
	14.172	3.392		
	15.254	3.297		
	16.066	3.230 3.095		
	17.012 17.959	2.946		
	18.906	2.811		
	19.988	2.649		
	21.070	2.473		
	22.152	2.270		
	22.963	2.054		
9	(T-2	.97 K)	Single ervetale petwo with majority	Spitzer U.C. and
[44]	7.816	3.824	Single crystals, p-type with majority carrier concentration $N = 1.1 \times 10^{19}$	Spitzer, W.G. and
[44]	8.762	3.824	cm ⁻³ ; refractive index derived from	Fan, H.Y., 1957
	9.980	3.797	reflectivity and transmission mea-	
	10.926	3.770	surements; data taken from a figure.	
	12.008	3.730	beremen, data taken from a rigure.	
	12.955	3.703		
	14.037	3.622		
	14.984	3.514		
	16.066	3.432		
	17.148	3.324		
		3.230		
	17.959	J. 4.30		

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
10 [13]	(T=30 2.0581	4.1016	Single crystal of germanium from Sylvania Electronic Products Co.,	Salzberg, C.D. and Villa, J.J., 1957
	2.1526 2.3126	4.0917 4.0788	Woburn, MA; test prism cut with faces 4.5 x 4.0 cm and refracting angle of	
	2.4374	4.0706	11.8°; index of refraction measured	
	2.577	4.0610	by autocollimation method at 300 K;	
	2.7144	4.0554	data with uncertainty ±2 in fourth	
	2.998	4.0453	decimal place taken from a table.	
	3.3033	4.0370		
	3.4188	4.0336		
	4.258	4.0217		
	4.866	4.0170		
	6.238	4.0092		
	8.66	4.0036		
	9.72	4.0026		
	11.04	4.0020		
	12.20 13.02	4.0018 4.0016		
	14.21	4.0015		
	15.08	4.0014		
	16.00	4.0012		
11	(T=30	0 K)	Remeasurement of above single crystal	Salzberg, C.D. and
[39]	2.0581	4.1016	prism; minimum deviation method used;	Villa, J.J., 1958
	2.1526	4.0919	comparison of the single and poly-	
	2.3126	4.0786	crystalline results indicated no sig-	
	2.4374	4.0708	nificant differences; data from a table.	
	2.577 2.7144	4.0609 4.0552	table.	
	2.7144	4.0452		
	3.3033	4.0369		
	3.4188	4.0334		
	4.258	4.0216		
	4.866	4.0170		
	6.238	4.0094		
	8.66	4.0043		
	9.72	4.0034		
	11.04	4.0026		
	12.20	4.0023		
	13.02	4.0021	•	
12 [39]	(T=30 2.0581	00 K) 4.1018	Polycrystalline; supplied by Sylvania Electronic Products Co., Towonda, PA;	Salzberg, C.D. and Villa, J.J., 1958
[39]	2.1526	4.0919	refractive index measured by minimum	111111, 0101, 1550
	2.3126	4.0785	deviation method; data taken from a	
	2.4374	4.0709	table.	
	2.577	4.0608		
	2.7144	4.0554		
	2.998	4.0452		
	3.3033	4.0372		
	3.4188	4.0339		
	4.258	4.0217		
	4.866	4.0167		
	6.238 8.66	4.0095 4.0043		
	9.72	4.0043		
	11.04	4.0035		
	12.20	4.0020		
	13.02	4.0018		

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ n	Specifications and Remarks	Author(s), Year
13 [45]	(T=298 K) 0.36 4.13 0.40 4.14 0.43 4.03 0.46 4.07 0.49 4.37 0.52 4.74 0.54 5.07 0.58 5.37 0.60 5.56 0.63 5.31 0.66 5.17 0.69 4.84	Specimens of both mechanically polished and etched 6 Ω -cm germanium; optical constants obtained from ellipticity of reflected polarized light; the polished mirrors were boiled in benzene and refluxed over acetone for several hours before use; the effect of surface films were taken into account; data extracted from a figure.	Archer, R.J., 1958
14 [3]	(T=87 K) 1.743	5° germanium prism mounted against a plane mirror; Abbe autocollimation method applied to measure the deviation angle to within ±1'; data extracted from a figure.	Cardona, M., Paul, W., and Brooks, H., 1959
15 [3]	(T=190 K) 1.881 4.093 1.888 4.077 2.091 4.061 2.409 4.040 2.553 4.034 2.713 4.025 2.828 4.021 3.378 4.003 3.654 3.998 3.914 3.994 4.117 3.989 4.465 3.986 4.900 3.986 5.320 3.985	5° germanium prism mounted against s plane mirror; Abbe sutocollimation method applied to measure the devia- tion angle to within ±1'; data ex- tracted from a figure.	Cardona, M., et al., 1959
16 [3]	(T=297 K) 1.769 4.138 1.854 4.127 1.940 4.119 2.111 4.099 2.281 4.080 2.439 4.069 2.581 4.061 2.739 4.056 2.882 4.048	5° germanium prism mounted against a plane mirror; Abbe autocollimation method applied to measure the devintion angle to within ±1'; data extracted from a figure.	Cardona, E., et al., 1950

630 н. н. ы

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
16(cont.) [3]	3.083	4.046		Cardona, M.,
	3.383	4.035		Paul, W., and
	3.656	4.030		Brooks, H., 1959
	3.885	4.024		;
	4.129	4.024		
	4.445	4.020		
	4.861	4.018		
	5.320	4.015		
	5.578	4.012		
17	(T=3)	00 K)	Single crystal; etched surfaces;	Philipp, H.R. and
[46]	0.124	0.821	near normal reflectance spectrum	Taft, E.A., 1959
	0.132	0.779	between 0.1 and 1.8 µm observed,	
	0.138	0.815	above 1.77 µm reflectance calculated	
	0.148	0.812	from available refractive indices;	
	0.156	0.848	phase angle computed from reflectance	
	0.150	0.846	spectrum using the Krammers-Kronig	
	0.178	0.920	relation; optical constants deter-	
	0.190	0.957	mined from the Fresnel formulae;	
	0.204	1.108	data taken from a figure.	
	0.204	1.299	data taken ilom a ligule.	
	0.218	1.452	·	
	0.210	1.490		
	0.221			
		1.451		
	0.240	1.488		
	0.253	1.602		
	0.263	1.832		
	0.275	2.254		
	0.277	2.600		
	0.285	3.099		
	0.287	3.522		
	0.295	3.868		
	0.309	3.828		
	0.325	3.827		
	0.349	3.980		
	0.369	4.133		
	0.382	4.132		
	0.410	4.054		
	0.450	4.014		
	0.498	4.359		
	0.531	4.666		
	0.549	4.935		
	0.569	5.280		
	0.590	5.434		
	0.612	5.318		
	0.675	5.009		
	0.735	4.816		
	0.807	4.623		
	0.921	4.430		
	1.108	4.313		
	1.234	4.236		
	1.452	4.158		
	1.981	4.130		
	2.844	4.080		
	5.041	4.041		
	9.394			
	9.394	4.001		

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
18	(T≃297	K)	Thin film of 1.092 µm thick; deposited	Huldt, L. and
[47]	1.513	4.815	on rotating glass substrate at air	Staflin, T., 1959
	1.607	4.752	pressure of less than 4 x 10 ⁻⁵ mmHg	
	1.725	4.723	and rate of deposition of 30-60 Å/sec;	
	1.853	4.651	refractive indices determined from	
	2.031	4.622	reflection and interference observa-	
	2.228	4.540	tion; data taken from a figure.	
	2.803	4.497	· · · · · · · · · · · · · · · · · · ·	
	2.861	4.539		
	3.334	4.548		
	3.978	4.527		
	4.900	4.450		
	4.900	4.450		
19	(T=297		Thin film of 1.010 μm thick; deposited	Huldt, L. and
[47]	1.409	4.853	on rotating glass substrate at air	Staflin, T., 1959
	1.502	4.812	pressure of less than 4×10^{-5} mmHg	
	1.601	4.740	and rate of deposition of 30-40 Å/sec;	
	1.743	4.721	refractive indices determined from	
	1.887	4.651	reflection and interference observa-	
	2.087	4.620	tion; data taken from a figure.	
	2.309	4.538		
	2.617	4.497		
	2.803	4.548		
	3.029	4.498		
	3.676	4.515		
	4.525	4.438		
	4.625	4.457		
20	(T=297	K)	Thin film on rotating glass substrate	Huldt, L. and
[47]	2.803	4.497	deposited at air pressure of less	Staflin, T., 1959
	2.813	4.546	than 4×10^{-5} mmHg and at rate of	,,
	3.041	4.498	30-60 Å/sec; refractive indices	
	4.677	4.457	determined from Brewster angle mea-	
	4.077	7.757	surement; data taken from a figure.	
21	(T=297	K)	Thin film of 1 3/0 km thick on retating	Huldt I and
[47]	1.514	4.498	Thin film of 1.340 µm thick on rotating glass substrate deposited at nitrogen	Huldt, L. and
[47]			pressure of less than 4 x 10 ⁻⁵ mmHg	Staflin, T., 1959
	1.602 1.698	4.460 4.421	and at rate of 30-60 Å/sec; retractive	
			· · · · · · · · · · · · · · · · · · ·	
	1.809	4.381	indices determined from reflection	
	1.941	4.342	and interference measurements; data	
	2.105	4.299	taken from a figure.	
	2.292	4.261		
	2.523	4.239		
	2.855	4.232		
	3.022	4.239		
	3.248	4.227		
	3.766	4.211		
	4.507	4.209		
	4.583	4.148		
22	(T=297	K)	Thin film of 1.364 µm thick on rotating	Huldt, L. and
[47]	1.542	4.513	glass substrate deposited at nitrogen	Staflin, T., 1959
[4/]	1.640	4.479	pressure of less than 4 x 10 mmHg	
	1.040		and at rate of 30-60 Å/sec; refractive	
	1.727			
	1.737 1.858	4.438		
	1.858	4.422	indices determined from reflection	

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

ata Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
(cont.)	2.344	4.280		Huldt, L. and
[47]	2.611	4.278		Staflin, T., .959
	2.935	4.268		
	3.339	4.256		
	3.570	4.254		
	3.890	4.257		
	4.581	4.187		
	4.634	4.168		
23		97 K)	Thin film of 1.449 µm thick on rotating	Huldt, L. and
[47]	1.539 4.513 glass substrate deposited at nitrogen	Staflin, T., 1959		
	1.615	4.441	pressure of less than 4×10^{-5} mmHg	
	1.719	4.438	and at rate of 30-60 Å/sec; refractive	
	1.950	4.371	indices determined from reflection and	
	2.094	4.309	interference measurements; data taken	
	2.267	4.289	from a figure.	
	2.456	4.222		
	2.732	4.232		
	3.078			
		4.237		
	3.555 4.507	4.266 4.167		
24		97 K)	Thin film on rotating glass substrate	Huldt, L. and
[47]	3.033	4.242	deposited at nitrogen pressure of less	Staflin, T., 195)
	3.525	4.259	than 4×10^{-5} mmHg and at rate of 30-	
	4.583	4.167	60 Å/sec; refractive indices determined	
			from Brewster angle measurements; data	
			taken from a figure.	
25	(T=29	93 K)	Pure germanium crystal; prism angle =	Lukes, F., 1960
[36]	1.84	4.133	19°55.8'; $\rho = 40 \Omega$ -cm; measurements	
[30]	1.88	4.126	made by deviation method; data taken	
	1.97	4.115	from a figure.	
	2.05	4.104		
	2.15	4.094		
	2.18	4.090		
	2.30	4.081		
	2.36	4.077		
	2.41	4.073		
	2.47	4.068		
	3.43	4.034		
	3.82	4.027		
	4.15	4.022		
	4.13	4.022		
	5.43	4.020		
0.4				T3 T. 10/0
26		93 K)	Pure germanium crystal; prism angle = $14^{\circ}53.0^{\circ}$; ρ = 1.2Ω -cm; measurements	Lukes, F., 1960
[36]	1.75	4.150		
	5.15	4.013	made by deviation method; data taken	
	5.44	4.010	from a figure.	
	5.61	4.007		
27	(T=2	98 K)	Pure germanium crystal; prism angle =	Lukes, F., 1960
[36]	1.79	4.142	14°59.5'; $\rho = 0.016 \Omega$ -cm; measurements	
			made by deviation method; data taken	
[36]	1.88	4.128	made by deviation method: data taken	
[36]	1.88 2.06	4.128 4.102		
[36]	1.88 2.06 2.15	4.128 4.102 4.092	from a figure.	

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	'n	Specifications and Remarks	Author(s), Year
27(cont.) [36]	2.24 2.30 2.36 2.41 2.97 3.43 3.82 4.16 4.52 4.85 5.43 5.61	4.085 4.080 4.076 4.071 4.047 4.034 4.027 4.021 4.018 4.016 4.007 4.005		Lukes, F., 1960
28 [48]	T=80 1.494 1.550 1.602 1.653 1.698 1.748 1.804 1.907 2.000 2.105 2.210	4.133 4.117 4.105 4.086 4.079 4.068 4.060 4.042 4.031 4.023 4.013	High purity germanium; prism cut from a single crystal; prism angle: 4°21'30"; ρ = 50 Ω -cm; index of refraction measured by deviation method; data taken from a figure.	Kornfeld, M.I., 1960
29 [48]	(T=22 1.653 1.703 1.748 1.794 1.907 1.993 2.105 2.194	4.159 4.143 4.130 4.123 4.110 4.097 4.081 4.071 4.058	High purity germanium; prism cut from a single crystal; prism angle: 4°21'30"; ρ = 50 Ω -cm; index of refraction measured by deviation method; data taken from a figure.	Kornfeld, M.I., 1960
30 [48]	(T=29 1.698 1.698 1.744 1.799 1.907 2.000 2.098 2.202	4.171 4.161 4.148 4.138 4.120 4.107 4.094 4.084	High purity germanium; prism cut from a single crystal; prism angle: 4°21'30"; ρ = 50 Ω -cm; index of refraction measured by deviation method; data taken from a figure.	Kornfeld, M.I., 1960
31 [48]	(T=34 1.698 1.744 1.794 1.907 2.000 2.105 2.218	43 K) 4.199 4.192 4.174 4.156 4.138 4.123 4.112	High purity germanium; prism cut from a single crystal; prism angle: $4^{\circ}21'30''$; $\rho = 50~\Omega-cm$; index of refraction measured by deviation method: data taken from a figure.	Kornfeld, M.1., 1960
32 [48]	(T=40 1.794	01 K) 4.215	High purity germanium; prism cut from a single crystal; prism angle: 4°21'30";	Kornfeld, M.I., 1960

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

1.901 4.192 ρ = 50 R-cm; index of refraction Rornfeld, M.I., 196	Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
148	32(cont.)			ρ = 50 Ω-cm; index of refraction	Kornfeld, M.I., 1960
2.210	[48]				ı
1.901				taken from a figure.	
1.901		2.210	4.148		
1.901		(T=460	K).	High purity germanium; prism cut from	Kornfeld, 4.1., 1960
2.098	[48]	1.901	4.230	a single crystal; prism angle: 4°21'30";	,
2.218 4.184 from a figure. 34 (T=298 K) [37] 0.358 4.001 0.377 4.022 0.402 3.880 on to glass plates at a pressure of contended the transmissivity and reflectivity; data taken from a figure. 35 (T=298 K) [37] 0.827 4.95 0.836 5.01 0.875 4.45 boats on to glass plates at a pressure on the coats on the organism of the coats of the transmissivity and reflectivity; data taken from a figure. 35 (T=298 K) [49] 0.43 4.22 0.60 4.06 0.52 4.18 in an immersing liquid of known refractive index from the specimen measured values of the transmissivity and reflectivity; data taken from a figure. Lukes, F., 1960 L					
34				The state of the s	
37		2.218	4.184	from a figure.	
37	34	(T=298	K)	Thin films of germanium obtained by	Lukes, F., 1960
0.402 3.880 on to glass plates at a pressure on the order of 10 ⁻⁵ mmHg; refractive indices determined from the measured values of the transmissivity and reflectivity; data taken from a figure. 35 (T=298 K) [37] 0.827 4.95 on the order of 10 ⁻⁵ mmHg; refractive indices determined from the measured values of the transmissivity and reflectivity; data taken from a figure. 35 (T=298 K) [37] 0.827 4.95 on the order of 10 ⁻⁵ mmHg; refractive indices determined from the measured values of the transmissivity and reflectivity; data taken from a figure. 36 (T=298 K) [49] 0.43 4.22 on the order of 10 ⁻⁵ mmHg; refractive indices determined from the measured values of the transmissivity and reflectivity; data taken from a figure. Single crystal; polished specimens of 7 x 7 mm² surface; refractive index determined from the reflectance data from the specimen measured in air and in an immersing liquid of known refractive index; data taken from a figure. Single crystal; polished specimens of 7 x 7 mm² surface; refractive index determined from the reflectance data from the specimen measured in air and in an immersing liquid of known refractive index; data taken from a figure. Single crystal; polished specimens of 7 x 7 mm² surface; refractive index determined from the reflectance data from the specimen measured in air and in an immersing liquid of known refractive index; data taken from a figure. Single crystal; polished specimens of 7 x 7 mm² surface; refractive index determined from the reflectance data from the specimen measured in air and in an immersing liquid of known refractive index; data taken from a figure. Wiseleva, N.K. and Pribytkova, N.N., 1961	[37]	0.358		evaporating very pure germanium in a	•
0.431 3.717 0.471 3.616 0.522 4.148 0.604 4.905 0.648 4.987 0.656 5.008 0.677 4.927 0.802 4.787 35 (T=298 K) [37] 0.827 4.95 0.904 4.50 boats on to glass plates at a pressure on the order of 10 milk; refractive indices determined from the measured values of the transmissivity and reflectivity; data taken from a figure. 35 (T=298 K) [37] 0.827 4.95 0.836 5.01 0.875 4.45 boats on to glass plates at a pressure on the order of 10 milk; refractive indices determined from the measured values of the transmissivity and reflectivity; data taken from a figure. 36 (T=298 K) [49] 0.43 4.22 flectivity; data taken from a figure. 36 (T=298 K) [49] 0.43 4.22 flectivity; data taken from a figure. 37 (T=298 K) [49] 0.64 4.74 flectivity index; data taken from a figure. 38 (T=298 K) [49] 0.73 4.74 flectivity index; data taken from a figure. 39 (T=298 K) [40] 0.64 4.74 flectivity index; data taken from a figure. 30 (T=298 K) [40] 0.65 4.76 flectivity index; data taken from a figure. 31 (T=298 K) [40] 0.60 4.70 flectivity index; data taken from a figure. 31 (T=298 K) [41] 0.62 4.74 flectivity index; data taken from a figure. 32 (T=298 K) [42] 0.60 4.70 flectivity index; data taken from a figure. 33 (T=298 K) [43] 0.62 4.74 flectivity index; data taken from a figure. 34 (T=298 K) [51] 0.62 4.74 flectivity index; data taken from a figure. 35 (T=298 K) [52] 0.60 4.70 flectivity index; data taken from a figure. 36 (T=298 K) [53] 0.62 4.78 flectivity index data based upon similarities flectivity. Index flectivity index fle		0.377	4.022	vacuum from molybdenum or tungsten boats	
0.471 3.616 0.522 4.148 0.604 4.905 0.648 4.987 0.656 5.008 0.677 4.927 0.802 4.787 35 (T=298 K) [37] 0.827 4.95 0.904 4.50 0.970 4.88 indices determined from the measured values of the transmissivity and reflectivity; 0.836 5.01 0.875 4.95 0.904 4.50 0.970 4.88 on the order of 10 s mmHg; refractive indices determined from the measured values of the transmissivity and reflectivity; data taken from a figure. 36 (T=298 K) [49] 0.43 4.22 on the order of 10 s mmHg; refractive indices determined from the measured values of the transmissivity and reflectivity; data taken from a figure. 36 (T=298 K) [49] 0.43 4.22 on the order of 7 x 7 mm² surface; refractive index determined from the reflectance data 0.49 4.10 on 0.52 4.06 on the order of the reflectance data 0.49 4.10 on 0.52 4.06 in mimmersing liquid of known refractive index; data taken from a figure. 37 (T=298 K) [49] 0.64 4.74 on 0.64 4.74 on 0.66 4.54 on 0.68 4.26 on 0.70 4.15 on 0.73 4.07 on 0.74 1.15 on 0.73 4.07 on 0.75 on 0.76 3.99 37 (T=298 K) [31] 2.0 4.1083 in several materials; data taken from Salzberg, C.D., 19			3.880	on to glass_plates at a pressure on the	
0.522 4.148				C ·	
0.604 4.905 0.648 4.987 0.656 5.008 0.677 4.927 0.802 4.787 35 (T=298 K) Thin films of germanium obtained by evaporating very pure germanium in a vacuum from a molybdenum or tungsten 0.875 4.45 boats on to glass plates at a pressure on the order of 10 mHg; refractive indices determined from the measured values of the transmissivity and reposed to the content of t					
0.648 4,987 0.656 5.008 0.657 4.927 0.802 4.787 35 (T=298 K) [37] 0.827 4.95 evaporating very pure germanium in a vacuum from a molybdenum or tungsten boats on to glass plates at a pressure on the order of 10 mmHg; refractive indices determined from the measured values of the transmissivity and reflectivity; data taken from a figure. 36 (T=298 K) [49] 0.43 4.22 7 x 7 mm² surface; refractive index determined from the reflectance data from the specimen measured in air and in an immersing liquid of known refractive index; data taken from a figure. 37 (T=298 K) [31] 2.0 4.1083 Calculated data based upon similarities in several materials; data taken from Salzbergs, C.D., 190					
0.656 5.008 0.677 4.927 0.802 4.787 35 (T=298 K) Thin films of germanium obtained by evaporating very pure germanium in a vacuum from a molybdenum or tungsten boats on to glass plates at a pressure on the order of 10 5 mmHg; refractive indices determined from the measured values of the transmissivity and reflectivity; data taken from a figure. 36 (T=298 K) Single crystal; polished specimens of 7 x 7 mm² surface; refractive index determined from the reflectance data 0.49 4.10 c.64 4.14 determined from the reflectance data from the specimen measured in air and 0.52 4.06 in an immersing liquid of known refractive index; data taken from a figure. 37 (T=298 K) Calculated data based upon similarities and soluble process. The process of the respective of the control of the process of the control of the proces				data taken from a figure.	
0.677 4.927 0.802 4.787					
0.802 4.787 35					
Thin films of germanium obtained by evaporating very pure germanium in a vacuum from a molybdenum or tungsten of the order of 10 mmHg; refractive indices determined from the measured of the transmissivity and reflectivity; data taken from a figure. Test					
[37] 0.827 4.95 evaporating very pure germanium in a 0.836 5.01 vacuum from a molybdenum or tungsten 0.875 4.45 boats on to glass plates at a pressure on the order of 10 mmHg; refractive indices determined from the measured values of the transmissivity and reflectivity; data taken from a figure. 1.00 4.55 1.04 4.69 1.20 4.23 1.44 4.15 1.50 4.00 2.21 3.96 36 (T=298 K) Single crystal; polished specimens of 7 x 7 mm² surface; refractive index determined from the reflectance data of maximum from a figure. 36 (T=298 K) Single crystal; polished specimens of 7 x 7 mm² surface; refractive index determined from the reflectance data of maximum from a figure. 36 (T=298 K) Single crystal; polished specimens of 7 x 7 mm² surface; refractive index determined from the reflectance data of maximum from a figure. 37 (T=298 K) Calculated data based upon similarities in several materials; data taken from Salzberg, C.D., 196		0.002	4./0/		
0.836 5.01 vacuum from a molybdenum or tungsten 0.875 4.45 on the order of 10 mmlg; refractive 0.904 4.50 on the order of 10 mmlg; refractive 0.970 4.88 indices determined from the measured 0.973 4.85 values of the transmissivity and re- 0.983 4.82 flectivity; data taken from a figure. 1.00 4.55 1.04 4.69 1.20 4.23 1.44 4.15 1.50 4.00 2.21 3.96 36 (T=298 K) Single crystal; polished specimens of [49] 0.43 4.22 7 x 7 mm² surface; refractive index 0.46 4.14 determined from the reflectance data 0.49 4.10 determined from the reflectance data 0.52 4.06 in an immersing liquid of known refrac- 0.54 4.18 tive index; data taken from a figure. 0.60 4.70 0.62 4.74 0.64 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. one [31] 2.0 4.1083 in several materials; data taken from Salzberg, C.D., 190					Lukes, F., 1950
0.875	[3/]				•
0.904 4.50 on the order of 10° mmHg; refractive 0.973 4.85 indices determined from the measured 0.983 4.82 flectivity; data taken from a figure. 1.00 4.55 1.04 4.69 1.20 4.23 1.44 4.15 1.50 4.00 2.21 3.96 36 (T=298 K) Single crystal; polished specimens of [49] 0.43 4.22 7 x 7 mm² surface; refractive index 0.46 4.14 determined from the reflectance data 0.49 4.10 from the specimen measured in air and 0.52 4.06 in an immersing liquid of known refractive index; data taken from a figure. 0.54 4.18 0.58 4.42 0.58 4.42 0.60 4.70 0.62 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities [31] 2.0 4.1083 in several materials; data taken from Salzberg, C.D., 190					
0.970 4.88 indices determined from the measured 0.973 4.85 values of the transmissivity and re- 0.983 4.82 flectivity; data taken from a figure. 1.00 4.55 1.04 4.69 1.20 4.23 1.44 4.15 1.50 4.00 2.21 3.96 36 (T=298 K) Single crystal; polished specimens of 7 x 7 mm² surface; refractive index determined from the reflectance data from the specimen measured in air and 0.52 4.06 in an immersing liquid of known refractive index tive index; data taken from a figure. 0.54 4.18 tive index; data taken from a figure. 0.58 4.42 0.60 4.70 0.62 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities in several materials; data taken from Salzberg, C.D., 190	*			boats on to glass plates at a pressure	
0.973 4.85 values of the transmissivity and re- 0.983 4.82 flectivity; data taken from a figure. 1.00 4.55 1.04 4.69 1.20 4.23 1.44 4.15 1.50 4.00 2.21 3.96 36 (T=298 K) Single crystal; polished specimens of [49] 0.45 4.22 7 x 7 mm² surface; refractive index determined from the reflectance data 0.49 4.10 from the specimen measured in air and 0.52 4.06 in an immersing liquid of known refractive index; data taken from a figure. 0.54 4.18 tive index; data taken from a figure. 0.58 4.42 0.60 4.70 0.62 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities in several materials; data taken from Salzberg, C.D., 199				- ·	
0.983 4.82 1.00 4.55 1.04 4.69 1.20 4.23 1.44 4.15 1.50 4.00 2.21 3.96 36 (T=298 K) Single crystal; polished specimens of [49] 0.43 4.22 7 x 7 mm² surface; refractive index 0.49 4.10 from the specimen measured in air and 0.52 4.06 in an immersing liquid of known refractive index; data taken from a figure. 0.54 4.18 tive index; data taken from a figure. 0.54 4.18 0.66 4.74 0.66 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities in several materials; data taken from Salzberg, C.D., 196					
1.00 4.55 1.04 4.69 1.20 4.23 1.44 4.15 1.50 4.00 2.21 3.96 36 (T=298 K) Single crystal; polished specimens of [49] 0.43 4.22 7 x 7 mm² surface; refractive index 0.46 4.14 determined from the reflectance data 0.49 4.10 from the specimen measured in air and 0.52 4.06 in an immersing liquid of known refractive index 4.18 co.58 4.42 0.60 4.70 0.62 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and [31] 2.0 4.1083 in several materials; data taken from Salzberg, C.D., 196				-	
1.04				frectivity, data taken from a fredie.	
1.20 4.23 1.44 4.15 1.50 4.00 2.21 3.96 36 (T=298 K) Single crystal; polished specimens of [49] 0.43 4.22 7 x 7 mm ² surface; refractive index O.46 4.14 determined from the reflectance data O.49 4.10 from the specimen measured in air and O.52 4.06 in an immersing liquid of known refractive index; data taken from a figure. 0.54 4.18 tive index; data taken from a figure. 0.58 4.42 0.60 4.70 0.62 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and Salzberg, C.D., 196					
1.44 4.15 1.50 4.00 2.21 3.96 36 (T=298 K) Single crystal; polished specimens of [49] 0.43 4.22 7 x 7 mm² surface; refractive index 0.46 4.14 determined from the reflectance data 0.49 4.10 from the specimen measured in air and 0.52 4.06 in an immersing liquid of known refractive index; data taken from a figure. 0.54 4.18 tive index; data taken from a figure. 0.58 4.42 0.60 4.70 0.62 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. amg Salzberg, C.D., 198					
1.50 4.00 2.21 3.96 36 (T=298 K) Single crystal; polished specimens of [49] 0.43 4.22 7 x 7 mm² surface; refractive index [49] 0.46 4.14 determined from the reflectance data [40] 0.49 4.10 from the specimen measured in air and [40] 0.52 4.06 in an immersing liquid of known refractive index; data taken from a figure. 0.54 4.18 tive index; data taken from a figure. 0.58 4.42 0.60 4.70 0.62 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities [Hertzberger, M. amg Salzberg, C.D., 19]					
2.21 3.96 36					
[49] 0.43 4.22 7 x 7 mm ² surface; refractive index 0.46 4.14 determined from the reflectance data 0.49 4.10 from the specimen measured in air and 0.52 4.06 in an immersing liquid of known refractive index; data taken from a figure. 0.54 4.18 tive index; data taken from a figure. 0.58 4.42 0.60 4.70 0.62 4.74 0.64 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. ame [31] 2.0 4.1083 in several materials; data taken from Salzberg, C.D., 199					
[49] 0.43 4.22 7 x 7 mm ² surface; refractive index 0.46 4.14 determined from the reflectance data 0.49 4.10 from the specimen measured in air and 0.52 4.06 in an immersing liquid of known refractive index; data taken from a figure. 0.54 4.18 tive index; data taken from a figure. 0.58 4.42 0.60 4.70 0.62 4.74 0.64 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. ame [31] 2.0 4.1083 in several materials; data taken from Salzberg, C.D., 199	36	(T-200	עו	Single erystel, poliched specimens of	Kiseleva N.K. and
0.46 4.14 determined from the reflectance data 1961 0.49 4.10 from the specimen measured in air and 0.52 4.06 in an immersing liquid of known refractive index; data taken from a figure. 0.54 4.18 tive index; data taken from a figure. 0.58 4.42 0.60 4.70 0.62 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and Salzberg, C.D., 199					
0.49 4.10 from the specimen measured in air and 0.52 4.06 in an immersing liquid of known refrac- 0.54 4.18 tive index; data taken from a figure. 0.58 4.42 0.60 4.70 0.62 4.74 0.64 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and Salzberg, C.D., 190	[42]				
0.52 4.06 in an immersing liquid of known refrac- 0.54 4.18 tive index; data taken from a figure. 0.58 4.42 0.60 4.70 0.62 4.74 0.64 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and Salzberg, C.D., 190					
0.54 4.18 tive index; data taken from a figure. 0.58 4.42 0.60 4.70 0.62 4.74 0.64 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and Salzberg, C.D., 190					
0.58				- · · · · · · · · · · · · · · · · · · ·	
0.60 4.70 0.62 4.74 0.64 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and Salzberg, C.D., 190					
0.62 4.74 0.64 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and Salzberg, C.D., 190					
0.64 4.74 0.66 4.54 0.68 4.26 0.70 4.15 0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and Salzberg, C.D., 190					
0.68					
0.70			4.54		
0.73 4.07 0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and [31] 2.0 4.1083 in several materials; data taken from Salzberg, C.D., 190		0.68	4.26		
0.76 3.99 37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and [31] 2.0 4.1083 in several materials; data taken from Salzberg, C.D., 190			4.15		
37 (T=298 K) Calculated data based upon similarities Hertzberger, M. and [31] 2.0 4.1083 in several materials; data taken from Salzberg, C.D., 190			4.07		
[31] 2.0 4.1083 in several materials; data taken from Salzberg, C.D., 190		0.76	3.99		
[31] 2.0 4.1083 in several materials; data taken from Salzberg, C.D., 190	37	(T=298	3 K)	Calculated data based upon similarities	Hertzberger, M. and
		•	•		Salzberg, C.D., 1962
Z.J W.UUUM a Kinch canic.		2.5	4.0664	a given table.	

REFRACTIVE INDEX OF SILICON AND GERMANIUM

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
37(cont.)	3.0	4.0449		Hertzberger, M. and
[31]	3.5	4.0324		Salzberg, C.D., 1962
	4.0	4.0244		
	4.5	4.0190		
	5.0	4.0151		
	5.5	4.0123		
	6.0	4.0102		
	6.5	4.0085		
	7.0	4.0072		
	7.5	4.0062		
	8.0	4.0053		
	8.5	4.0046		
	9.0	4.0040		
	9.5	4.0036		
	10.0	4.0032		
	10.5	4.0029		
	11.0	4.0026		
	11.5	4.0024		
	12.0	4.0023		
	12.5	4.0022		
	13.0	4.0021		
	13.5	4.0021		
38		=7.5 K)	Single crystal; thin plate specimens	Aronson, J.R.,
[50]	23-40	3.98±0.02	of 0.5 to 2.0 mm thick cut perpendicular	McLinden, H.G., and
	45-67	3.90±0.02	to the <111> axis; refractive index mea-	Gielisse, P.J., 1964
			sured using interference method; refrac-	
			tive indices found to be constant in the	
			region between 23 and 67 μm.	
39	(T:	=297 K)	Single crystal; thin plate specimens	Aronson, J.R., et al.
[50]	83-143	3.98±0.02	of 0.5 to 2.0 mm thick cut perpendicular	1964
			to the <111> axis; refractive index	
			measured using interference method.	
40	(Tree 2	one vl	Amorphous cormonium thin film proposed	Tours 1 Abroham A
		298 K)	Amorphous germanium thin film prepared	Tauc, J., Abraham, A.
[51]	0.695	4.742	by evaporation of very pure germanium	Pajasova, L.,
	0.743	4.792	in a vacuum better than 10^{-5} mmHg on	Grigorovici, R., and
	0.797	4.735	a fused quartz substrate at room tem-	Vancu, A., 1965
	0.865	4.736	perature; refractive index determined	
	0.952	4.637	from reflection and transmission mea-	
	1.147	4.597	surements; data read from a figure.	
	1.156	4.564		
	1.202	4.506		
	1.263	4.457		
	1.305	4.515		
	1.352	4.424		
	1.403	4.392		
	1.514	4.326		
	1.647	4.260		
	1.742	4.244		
	1.742	4.211		
	1.920	4.162		
	2,105	4.146		
	2.150	4.096		
	2.195	4.096		
	2.331	4.014		
	2.573	3.998		
	2.313	J. 220		

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(3), Year
41		20 K)	Intrinsic germanium; electropolished;	Potter, R.7., 1966
[52]	0.443	4.246	the ratio of the reflectances of the	
	0.463	4.305	parallel and perpendicular components	
	0.480	4.410	of radiation, and the pseudo-Brewster	
	0.496	4.504	angle measured; the effects of the	
	0.501	4.551	presence of the oxide layer were cor-	
	0.508	4.797	rected; optical constants were reduced	
	0.513	4.984	based on the Fresnel relationships;	
	0.523	5.172	data taken from a figure.	
	0.537 0.548	5.324		
	0.551	5.441 5.523		
	0.557	5.664		
	0.563	5.723		
	0.566	5.770		
	0.566	5.781		
	0.578	5.793		
	0.585	5.723		
	0.591	5.594		
	0.594	5.500		
	0.608	5.453		
	0.619	5.324		
	0.638	5.195		
	0.662	5.066		
	0.679	4.996		
	0.697	4.914		
	0.707	4.820		
	0.726	4.727		
	0.775	4.586		
	0.817	4.516		
	0.886	4.387		
	0.925	4.328		
	0.977	4.281		
	1.015	4.270		
	1.055	4.234		
	1.136	4.188		
	1.244	4.164		
	1.357	4.176		
	1.450 1.512	4.152 4.117		
42	(T=3	00 K)	Intrinsic germanium; electropolished;	Potter, R.F., 1966
[52]	0.416	4.248	the ratio of the reflectances of the	
-	0.446	4.259	parallel and perpendicular components	
	0.461	4.328	of radiation and the pseudo-Brewster	
	0.480	4.478	angle measured; the effects of the	
	0.499	4.663	presence of the oxide layer were cor-	
	0.516	4.835	rected; optical constants were reduced	
	0.532	5.078	based on the Fresnel relations; data	
	0.534	5.239	taken from a figure.	
	0.546	5.389		
	0.548	5.504		
	0.566	5.573		
	0.579	5.700		
	0.589	5.816		
	0.598	5.885		
	0.612	5.850		
	0.616	5.746		

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
42(cont.)	0.627	5.573		Potter, R.F., 1966
[52]	0.638	5.469		
	0.662	5.296		
	0.679	5.157		
	0.692	5.053		
	0.701	5.007		
	0.721	4.961		
	0.746	4.891		
	0.773	4.764		
	0.841	4.614		
	0.930	4.510		
	1.019	4.417		
	1.082	4.394		
	1.153	4.382		
	1.234	4.313		
	1.361	4.289		
	1.476	4.278		
	1.540 1.586	4.266 4.231		
	1.687	4.231		
	2.010	4.139		
	2.010	4.135		
43		94 K)	Good optical grade germanium samples;	Icenogle, H.W.,
[5]	2.554	3.98859	supplied by Exotic Materials, Inc.;	Platt, B.C., and
	2.652	3.98462	prism specimen measured with a modified	Wolfe, W.L., 1967
	2.732	3.98052	minimum deviation method; data taken	
	2.856	3.97720	from a table.	
	2.958	3.97390		
	3.090	3.97100		
	4.120	3.95334		
	5.190	3.94536		
	8.230	3.93720		
	10.270	3.93597		
	12.360	3.94026		
44		204 K)	Good optical grade germanium samples;	Icenogle, H.W.,
[5]	2.554	4.02528	supplied by Exotic Materials, Inc.;	et al., 1967
	2.652	4.01955	prism specimen measured with a modified	
	2.732	4.01511	minimum deviation method; data taken	
	2.856	4.01139	from a table.	
	2,958	4.00796		
	3.090	4.00485		
	4.120	3.98662		
	5.190	3.97820		
	8.230 10.270	3.96934		
	12.360	3.96745 3.96625		
45	/ m	<u>ንን</u> ፍ ሆነ	Cood entired exeds comparing complete	Tannania W.M.
[5]	2,554	275 K) 4.05659	Good optical grade germanium samples; supplied by Exotic Materials, Inc.;	Toenogle, H.W., et al., 1967
[2]	2.652	4.05201	prism specimen measured with a modified	Ct 41., 1907
	2.732	4.03201	minimum deviation method; data taken	
	2.856	4.04338	from a table.	
	2.958	4.04336	riom a capic.	
	3.090	4.03937		
	4.120	4.01732		
	5.190	4.00853		
	8.230	3.99933		
	10.270	3.99729		
	12.360	3.99607		

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
46	(T=	297 K)	Good optical grade germanium samples;	Icenogle, H.W.,
[5]	2.554	4.06230	supplied by Exotic Materials, Inc.;	Platt, E.C., and
	2.652	4.05754	prism specimen measured with a modi-	Wolfe, W.L., 1967
	2.732	4.05310	fied minimum deviation method; data	
	2.856	4.04947	taken from a table.	
	2.958	4.04595		
	3.090	4.04292		
	4.120	4.02457		
	5.190	4.01617		
	8.230	4.00743		
	10.270	4.00571		
	12.360	4.00627		
47	(T=3	00 K)	Single crystal; obtained from Exotic	Randall, C.M. and
[24]	69.793	4.0065		Rawcliffe R.D., 196
[27]	72.491	4.0058	Materials, Costa Mesa, CA; ρ >20 Ω -cm; plate specimen of 1.93837 \pm 1.3 x 10 $^{\circ}$	Maweriffe M.D., 190
	75.686	4.0055	um thick; refractive indices measured	
	77.691	4.0060	using interference method; data taken	
	81.374	4.0057	from a figure.	
	85.075	4.0058	Tiom a righte.	
	88.748	4.0062		
	92.747	4.0062		
	97.584	4.0062		
	101.94	4.0066		
	108.38	4.0065		
	113.77	4.0066		
	121.13	4.0064		
	128.71	4.0066		
	137.30	4.0066		
	148.17	4.0066		
	159.65	4.0063		
	173.06	4.0061		
	199.68	4.0059		
	210.15	4.0058		
	236.70	4.0054		
	267.42	4.0051		
	311.98	4.0049		
	367.59	4.0045		
	447.46	4.0043		
48	(T=30	•	Single crystal; obtained from Exotic	Randall, C.M. and
[24]	79.470	4.0042	Materials, Costa Mesa, CA; ρ>10 Ω-cm;	Rawcliffe, R.D., 196
	81.682	4.0045	plate specimen of 6.22931 \pm 1.3 \times 10 $^{-4}$	
	85.062	4.0049	mm thick; refractive indices measured	
	88.726	4.0047	using interference method; data taken	
	9 2.729	4.0051	from a figure.	
	97.106	4.0052		
	102.42	4.0055		
	107.79	4.0055		
	113.75	4.0058		
	121.11	4.0059		
	128.68	4.0059		
	137.28	4.0059		
	148.14	4.0059		
	159.63	4.0059		
	173.04	4.0056		
	100 00	4.0057		
	188.92	4.0057		

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
48(cont.)	233.98	4.0052		Randall, C.M. and
[24]	264.01	4.0053		Rawcliffe, R.D., 1967
	307.37	4.0052		
	361.28	4.0050		
	447.64	4.0048		
	587.95	4.0041		
49	(T=2	98 K)	Thin film of 1×10^{-3} mm thick obtained	Gisin, M.A. and
[53]	1.485	4.685	from evaporation of crystal germanium,	Ivanov, V.A., 1967
	1.487	4.572	with ρ-40 Ω-cm, from graphite boats in	
	1.536	4.410	a vacuum of 2-5 x 10^{-5} Torr; polished	
	1.633	4.249	plates of barium fluoride served as	
	1.777	4.108	the substrates at temperature of 293-	
	1.873	4.023	303 K during evaporation; optical con-	
	2.039	3.953	stants determined from the transmission	
	2.230	3.897	of the films and the order of inter-	
	2,420	3.855	ference; data taken from a figure.	
	2.634	3.813		
	2.895	3.778		
	3.132	3.764		
	3.441	3.757		
	3.702	3.751		
	3.963	3.744		
	4.224	3.737		
	4.485	3.730		
	4.769	3.717		
	5.007	3.717		
	5.291	3.710		
	5.552	3.703		
	5.837	3.697		
	6.098	3.683		
	6.335	3.683		
	6.454	3.683		
50		98 K)	Thin films of 1 x 10 ⁻³ mm thick obtained	Gisin, M.A. and
[53]	1.367	4.692	from evaporation of crystal germanium,	Ivanov, V.A., 1967
	1.416	4.565	with $\rho=40$ Ω -cm, from graphite boats in	
	1.464	4.453	a vacuum of 2.5 x 10 ⁻⁵ Torr; polished	
	1.561	4.340 4.213	plates of barium fluoride served as	
	1.681 1.895	4.101	the substrates at temperature of 403-	
	2.158	3.989	423 K during evaporation; optical constants determined from the trans-	
	2.467	3.904	mission of the films and the order of	
	2.847	3.841	interference; data taken from a figure.	
	3.274	3.807	interierence, data taken from a rigure.	
	3.725	3.786		
	4.128	3.779		
	4.579	3.773		
	5.053	3.773		
	5.457	3.774		
	5.883	3.767		
	6.334	3.767		
	6.429	3.760		
	(T=?	98 K)	Thin films of 1×10^{-8} mm thick obtained	Gisin. M.A. and
21		r xr 44/	area assure or a 2 2 20 mm chack operation.	www.mang angage cheese
51 [53]		4.678	from evaporation of crystal germanium.	Ivanov, V.A., 1967
[53]	1.272 1.273	4.678 4.593	from evaporation of crystal germanium, with ρ =40 Ω -cm, from graphite boats in	Ivanov, V.A., 1967

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
51(cont.)	1.371	4.368	plates of barium fluoride served as	Gisiı, M.A. and
[53]	1.442	4.305	the substrates at temperatures of 523-	Ivan v, V.A., 1967
	1.538	4.234	573 K during evaporation; optical con-	
	1.681	4.171	stants determined from the transmission	
	1.848 2.109	4.115 4.073	of the films and the order of inter-	
	2.371	4.073	ference; data taken from a figure.	
	2.703	3.989		
	3.130	3.961		
	3.581	3.948		
	4.032	3.934		
	4.482	3.935		
	4.909	3.928		
	5.407	3.921		
	5.977	3.915		
	6.309	3.915		
	6.498	3.915		
52		98 K)	Thin film samples of 0.5-5 μm thick	Wales, J.,
[54]	1.464	4.576	prepared by thermal evaporation from	Lovitt G.J., and
	1.640	4.527	an electron beam heated source on to	Hill, I.A., 1967
	1.916	4.468	unheated substrates in a vacuum of	
	2.167	4.428 4.384	1 x 10 ⁻⁶ Torr; refractive indices	
	2.493 2.843	4.364	determined from the sample thickness and interference fringe order obser-	
	3.369	4.310	vations; averaged values read from a	
	3.919	4.296	best fit curve.	
	4.445	4.281		
	4.870	4.276		
	5.220	4.272		
	5.445	4.267		
53	(T=2	98 K)	Thin film samples of 0.5-5 μm thick	Wales, J., et al.,
[54]	1.359	4.788	deposited on unheated substrates from	1967
	1.406	4.724	an electron beam_heated source in a	
	1.477	4.651	vacuum of 1×10^{-6} Torr; refractive	
	1.547	4.592	indices determined from the sample	
	1.686	4.533	thickness and interference fringe order	
	1.847	4.483	observations; averaged values read	
	2.009	4.438 4.406	from a best fit curve.	
	2.216 2.400	4.379		
	2.653	4.361		
	2.951	4.339		
	3.319	4.317		
	3.755	4.303		
	4.053	4.294		
	4.283	4.290		
	4.512	4.286		
	4.719	4.286		
54	(T=2	98 K)	Thin film samples of 0.5-5 μm thick	Wales, J., et al.,
[54]	1.316	4.543	deposited on unheated substrates from	1967
-	1.410	4.493	an electron beam heated source in an	
	1.503	4.439	atmosphere of oxygen at 1×10^{-4} Torr;	
	1.644	4.381	refractive indices determined from the	
	1.806	4.340	sample thickness and interference order	

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
54(cont.)	1.992	4.304	observations; averaged values read	Wales, J.,
[54]	2.269	4.264	from a best fit curve.	Lovitt, G.J., and
	2.478	4.242		Hill, R.A., 1967
	2.709	4.224		
	2.962	4.211		
	3.285	4.202		
	3.562	4.193		
	3.908	4.185		
	4.277	4.176		
	4.600	4.177		
	5.015	4.168		
	5.314	4.173		
	5.567	4.173		
55	· (T=2)	98 K)	Thin film samples of 0.5-5 µm thick	Wales, J., et al.,
[54]	1.463	4.679	deposited on unheated substrates from	1967
[24]	1.551	4.606	an electron beam heated source in an	1701
	1.641	4.560	atmosphere of nitrogen at 1 x 10 4 Torr;	
	1.776	4.519	refractive indices determined from	
	1.935	4.487	sample thickness and interference	
	2.094	4.455	fringe order observation; averaged values read from a best fit curve.	
	2.276 2.618	4.432 4.390	values read from a best fit curve.	
	3.006	4.367		
	3.395	4.348		
	3.716	4.333		
	4.082	4.328		
	4.610	4.322		
	5.023	4.321		
	5.436	4.325		
	5.734 6.009	4.324 4.328		
	(m. 0)	00 17)	mit 617	77 7 7 1
56		98 K)	Thin film samples of 0.5-5 µm thick	Wales, J., et al.,
[54]	1.560	4.681	deposited on unheated substrates from	1967
	1.608	4.640	an electron beam heated source in an	
	1.679	4.595	atmosphere of hydrogen at 1 x 10 4 Torr;	
	1.773	4.546	refractive indices determined from the	
	1.912	4.501	sample thickness and interference	
	2.006	4.452	fringe order observations; averaged	
	2.191	4.416	values read from a best fit curve.	
	2.445	4.371		
	2.698	4.345		
	2.973	4.323		
	3.293	4.305		
	3.637	4.288		
	4.003	4.280		
	4.391	4.276		
	4.779	4.273		
	5.099	4.278		
	5.418	4.278		
	5.624	4.283		
57	•	98 K)	Thin film samples of 0.5-5 μm thick	Wales, J., et al.,
[54]	1.265	4.605	deposited on cooled substrates at 273 K	1967
	1.266	4.556	from a carbon boat in a vacuum of 1 x	
	1.336	4.493	10 ⁻⁶ Torr; refractive indices determined	
	1.405		from the sample thickness and interference	

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
57(cont.)	1.498	4.386	fringe order observation; averaged	Wales, J.,
[54]	1.636	4.318	values read from a best fit curve.	Lovitt, G.J., and
	1.728	4.292		Hill, R.A., 1967
	1.911	4.256		
	2.140	4.216		
	2.392	4.193		
	2.643	4.176		
	3.100 3.420	4.158 4.149		
	3.808	4.141		
	4.219	4.141		
	4.562	4.141		
	4.859	4.141		
	5.132	4.146		
58	(T=2	98 K)	Thin film samples of 0.5-5 µm thick	Wales, J., et al.,
[54]	1.300	4.570	deposited on substrates at 373-473 K	1967
• •	1.425	4.492	from a carbon boat in a vacuum of	
	1.525	4.427	1×10^{-6} Torr; refractive indices	
	1.675	4.373	determined from the sample thickness	
	1.825	4.319	and interference fringe order observa-	
	1.973	4.280	tions; averaged values read from a	
	2,150	4.250	best fit curve.	
	2.325	4.220		
	2.600	4.196		
	2.925	4.186		
	3.300	4.181		
	3.825 4.250	4.171 4.166		
	4.650	4.156		
	5.025	4.156		
	5.325	. 4.146		
	5.575	4.142		
	5.700	4.142		
59	(T=2	98 K)	Thin film samples of 0.5-5 µm thick	Wales, J., et al.,
[54]	1.256	4.386	deposited on substrates at 673 K from	1967
	1.370	4.314	a carbon boat in a vacuum of 1×10^{-6}	
	1.507	4.250	Torr; refractive indices determined	
	1.644	4.205	from the sample thickness and inter-	
	1.804	4.145	ference fringe observations; averaged	
	1.963	4.100	values read from a best fit curve.	
	2.192	4.059		
	2.420 2.808	4.027		
	3.174	4.000 3.995		
	3.539	3.991		
	3.950	3.986		
	4.498	3.982		
	4.840	3.986		
	5.114	3.995		
60	(T=2	298 K)	Thin film samples of 0.5-5 µm thick	Wales, J., et al.,
[54]	1.593	4.381	deposited on substrate at 773-873 K from	1967
	1.662	4.286	a carbon boat in a vacuum of 1×10^{-6}	
	1.845	4.204	Torr; refractive indices determined	
	1.983	4.150	from the sample thickness and inter-	
	2.191	4.104	ference fringe order observations;	

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
60(cont.) [54]	2.605 2.974 3.388 3.849 4.264 4.702 5.001	4.063 4.045 4.031 4.026 4.022 4.026 4.026	averaged values read from a best fit curve.	Wales, J., Lovitt, G.J., and Hill, R.A., 1967
61 [54]	(T=298) 1.420 1.512 1.667 1.821 2.068 2.377 2.778 3.148 3.488 3.858 4.259 4.691 5.062 5.278 5.617 5.988	8 K) 4.530 4.482 4.422 4.336 4.298 4.277 4.266 4.250 4.239 4.234 4.234 4.223 4.223	Film samples deposited from carbon boat source; refractive indices determined from the sample thickness and interference fringe order observation; averaged values read from a best fit curve.	Wales, J., et àl.,
62 [55]	(T=298 0.5461	K) 5.46	Single crystal; $\rho=40~\Omega-cm$; n-type; specimens with <111> surfaces cleaved by the Gobeli-Allen technique; refractive index determined by ellipsometry method; the average value reported with error ± 0.10 .	Knausenberger, W.H. and Vedam, K., 1969
63 [56]	(T=298 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3	K) 4.67 4.59 4.55 4.31 4.34 4.30 4.24 4.22 4.24 4.11 4.09 4.07 4.06 4.06 4.07 4.05 4.04 3.97 4.01 3.99 4.00 3.99	Amorphous Ge films; vacuum deposited onto rotating substrates of fused quartz, fused silica and KC1; evaporation sources of tungsten boat, A1 ₂ 0 ₃ -coated boat and electron beam gun; deposition rate 10-50 Å/sec; refractive indices determined from the reflectance and transmittance measurements made in a dry nitrogen atmosphere; average values of refractive indices of films of thicknesses 0.0816 µm, 0.2138 µm, 0.3576 µm and 0.5371 µm taken from a table.	Donovan, T.M., Spicer, W.E., Bennett, J.M., and Ashley, E.J., 1970

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n .	Specifications and Remarks	Author(s), Year
63(cont.)	3.4	4.00		Donovan, T.M.,
[56]	3.5	3.99		Spicer, W.E.,
	3.6	4.00		Bennett, J.M., and
	3.7	3.99		Ashley, E.J., 1970
	3.8	4.00		
	3.9	3.995		
	4.0	4.00		
64	(T=29	98 K)	Amorphous Ge film of 0.5371 µm; vacuum	Donovan, T.M., et al.
[56]	4.0	4.02	deposited onto rotating substrate of	.970
	4.4	4.06	KCl; evaporation sources of tungsten	•
	4.8	4.01	boat, Al ₂ O ₃ -coated boat and electron	
	5.2	4.01	beam gun; deposition rate 10-50 Å/sec;	
	5.6	4.01	refractive indices determined from the	
	6.0	4.01	reflectance and transmittance measure-	
	6.4	3.98	ments made in a dry nitrogen atmosphere;	
	6.8	4.11	data taken from a table.	
	7.2	3.99		
	7.6	4.04		
	8.0	3.98		
	8.5	3.98		
	9.0	3.99		
	9.5	3.97		
	10.0	3.98		
	11.0	3.95		
	12.0	3.98		
	13.0	3.98		
	13.5	3.99		
	13.7	4.01		
65	(T=3	00 K)	Single crystal polished and etched;	Jurgk, G., 1971
[57]	0.294	3.397	optical constants determined by the	1
	0.298	3.437	ellipsometric method; data extracted	
	0.303	3.463	from a figure.	
	0.307	3.437		
	0.309	3.437		
	0.313	3.437		
	0.316	3.424		
	0.321	3.424		
	0.325	3.489		
	0.330	3.489		
	0.335	3.528		
	0.339	3.580		
	0.344	3.632		
	0.349	3.659		
	0.353	3.659		
	0.360	3.685		
	0.368	3.698		
	0.374	3.737		
	0.380	3.763		
	0.385	3.789		
	0.392	3.776		
	0.397	3.737		
	0.404	3.724		
		J. 127		
		3.698		
	0.413	3.698 3.672		
		3.698 3.672 3.672		

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
65(cont.)	0.472	3.802		Jungk, G., 1971
[57]	0.484	3.907		
	0.489	3.972		
	0.494	3.969		
	0.506	4.088		
	0.514	4.236		
	0.519 0.524	4.341 4.445		
	0.530	4.608		
	0.533	4.668		
	0.540	4.757		
	0.547	4.817		
	0.555	4.861		
	0.562	4.980		
	0.566	5.055		
	0.571	5.144		
	0.573	5.233		
	0.579	5.337		
	0.583	5.397		
	0.587 0.589	5.456 5.486		
	0.595	5.471		
	0.600	5.426		
	0.605	5.382		
	0.609	5.337		
	0.614	5.292		
	0.621	5.247		
	0.625	5.188		
	0.638	5.083		
66	(T=3	00 K)	Amorphous germanium; thin film specimen	Jungk, G., 1971
[57]	0.672	2.911	of about 1 µm thick prepared by thermal	
	0.691	3.024	evaporation of germanium from a tungsten	
	0.712	3.137	boat on glass substrate in a vacuum of	
	0.738	3.242	10 Torr; substrate held at 293 K during	
	0.765	3.347	evaporation; refractive indices deter-	
	0.794	3.500 3.557	mined by ellipsometric method; data	
	0.824	3.605	taken from a figure.	
	0.839	3.686		
	0.860	3.750		
	0.877	3.807		
	0.895	3.871		
	0.913	3.920		
	0.932	3.984		
	0.952	4.049		
	0.972	4.089		
	0.994	4.154		
	1.021	4.202 4.243		
	1.044 1.073	4.243		
(=	/m ^	100 773	A	71. 0 1071
67		00 K)	Amorphous germanium; thin film specimen	Jungk, G., 1971
[57]	0.533	2.033	of about 1 µm thick prepared by thermal	
	0.547 0.562	2.098 2.177	evaporation of germanium from a tungsten boat on glass substrate in a vacuum of	
	0.578	2.308	10 ⁻⁶ Torr; substrate held at 373 K	
			are areas summerable state of all the	

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

		(***	Total and the second of the se	Æ
Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
67(cont.)	0.615	2.583	determined by ellipsometric method;	Jungk, C., 1971
[57]	0.631	2.635	data taken from a table.	
	0.651	2.740		
	0.669	2.923		
	0.692	3.041		
	0.715	3.146		
	0.738	3.238		
	0.765	3.356		
	0.810	3.526		
	0.822	3.591		
	0.843	3.670		
	0.856	3.722		
	0.884	3.775		
	0.898	3.853		
	0.913	3.906		
	0.934	3.971		
	0.955	4.023		
	0.978	4.076		
	0.995	4.154		
	1.020	4.181		
	1.046	4.233		
	1.073	4.272		
	1.132	4.351		
	1.198	4.430		
68	(T=3	300 K)	Amorphous germanium; thin tilm specimen	Jungk, G., 1971
[57]	0.670	2.791	of about 1 µm thick prepared by thermal	
	0.691	2.895	evaporation of germanium from a tungsten	
	0.713	2.968	boat on glass substrate in a vacuum of	
	0.736	3.057	10 Torr; substrate held at 473 K	
	0.763	3.154	during evaporation; refractive indices	
	0.795	3.267	determined by ellipsometric method;	
	0.824	3.364	data taken from a figure.	
	0.858	3.477		
	0.895	3.574		
	0.933	3.647		
	0.973	3.736		
	1.018	3.809		
	1.066	3.882		
69	(T=3	300 K)	Microcrystalline germanium; thin film	Jungk, G., 1971
[57]	0.535	2.647	specimen of about 1 µm thick prepared	
	0.549	2.699	by thermal evaporation of germanium from	
	0.564	2.817	a tungsten boat on glass substrate in a	
	0.580	2.948	vacuum of 10 ⁻⁶ Torr; substrate held at	
	0.594	3.053	573 K during evaporation; refractive	
	0.614	3.040	indices determined by ellipsometric	
	0.633	3.145	method; data taken from a figure.	
	0.650	3.223		
	0.672	3.302		
	0.691	3.329		
	0.715	3.368		
	0.741	3.395		
	0.765	3.447		
	0.799	3.565		
	0.806	3.617		
	0.826	3.670		
	0.843	3.774		
	5.015			

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
69(cont.)	0.861	3.866		Jungk, G., 1971
[57]	0.879	3.971		
	0.898	4.114		
	0.913	4.193		
	0.939	4.298		
	0.961	4.389		
	0.977	4.468		
	1.007	4.546		
	1.026	4.599		
	1.052	4.651		
	1.087	4.573		
	1.125	4.129		
70	(T=3	300 K)	Amorphous germanium; thin film specimen	Jungk, G., 1971
[57]	0.497	2.942	of about 1 µm thick prepared by thermal	-
	0.501	2.972	evaporation of germanium from a tungsten	
	0.504	3.002	boat on glass substrate in a vacuum of	
	0.508	3.063	10 ⁻⁶ Torr; substrate held at 673 K	
	0.510	3.093	during evaporation; refractive indices	
	0.515	3.138	determined by ellipsometric method;	
	0.517	3.168	data taken from a figure.	
	0.522	3.244	ū	
	0.524	3.274		
	0.528	3.334		
	0.533	3.394		
	0.537	3.440		
	0.541	3.470		
	0.546	3.530		
	0.550	3.561		
	0.556	3.636		
	0.559	3.666		
	0.563	3.712		
	0.567	3.787		
	0.572	3.832		
	0.578	3.923		
	0.581	3.968		
	0.585	4.013		
	0.592	4.058		
	0.596	4.074		
	0.600	4.089		
	0.605	4.089		
	0.610	4.074		
	0.616	4.045		
	0.621	3.985		
	0.628 0.638	3.910 3.806		
71	(n-1	293 K)	Single erystals group at the Bourt	Eduin P D
[38]	8.00	4.0058	Single crystal; grown at the Royal Signals and Radar Establishment, Malvern,	Edwin, R.P., Dudermel, M.T., and
[30]	9.00	4.0038	U.K. using the Czochraski pulling tech-	Lamare, M., 1978
	10.00	4.0043	nique; $\rho = 45-53 \Omega$ -cm; prismatic	Damare, 11., 1970
	11.25	4.0032	· ·	
	12.00	4.0022	specimen of 10.5 degree apex angle and 30 mm x 15 mm faces; refractive index	
	13.00	4.0017	measurements made at the Institut	
	14.00	4.0013	d'Optique, Orsay, France; data taken	
	.1 57 & U/U	4 * OOTT	o operque, orsay, rrance; data taken	

TABLE A-5. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	n	Specifications and Remarks	Author(s), Year
72	(T=	293 K)	Single crystal; grown at the Royal	Edwin, R.P.,
[38]	8.00	4.00551	Signals and Radar Establishment, Malvern,	Dudermel, M.T., and
	9.00	4.00423	U.K. using the Czochraski pulling tec 1-	Lamare, M., 1978
	10.00	4.00329	nique; $\rho = 45-53 \Omega - cm$; prismatic	
	11.25	4.00242	specimen of 10.5 degree apex angle and	
	12.00	4.00204	30 mm x 50 mm faces; refractive index	
	13.00	4.00157	measurements made at the National	
	14.00	4.00123	Physical Laboratory, U.K.; data taken	
			from a table.	
73	(T=)	298 K)	Single crystal; grown at the Royal	Edwin, R.P., et al.,
[38]	8.00	4.00748	Signals and Radar Establishment, Malvein,	1978
	9.00	4.00620	U.K. using the Czochraski pulling tech-	
	10.00	4.00525	nique; $\rho = 45-53 \Omega - cm$; prismatic	
	11.25	4.00436	specimen of 10.5 degree apex angle and	
	12.00	4.00398	30 mm x 15 mm faces; refractive index	
	13.00	4.00352	measurements made at the National	
	14.00	4.00315	Physical Laboratory, U.K.; data taken	
			from a table.	

TABLE A-6. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence)

[Temperature, T, K; Wavelength, \(\lambda\), \(\mu\mathrm{m}\); Refractive Index, \(n\)]

ata Set [Ref.]	: T	n	Specifications and Remarks	Author(s), Year
1	(λ=2.0	0 μm)	High purity single crystal; prism	Lukes, F., 1958
[58]	113.593	4.025	specimen of about 20 degree apex angle;	
	116.291	4.023	accuracy of deviation angle measure-	
	202.919	4.067	ment about 1' corrresponding to an	
	208.329	4.068	error of 0.001 in refractive index;	
	208.338	4.071	average accuracy of temperature mea-	
	211.027	4.067	surement about 0.5 K; data read from	
	228.630	4.078	a figure.	
	258.408	4.093		
	261.111	4.093		
	273.295	4.099		
	292.254	4.112		
	309.848	4.120		
	323.383	4.127		
	342.337	4.138		
	354.522	4.144		
	370.764	4.153		
	391.061	4.161		
	392.421	4.163		
	407.312	4.172		
2	(λ=2.0	0 μm)	High purity single crystal; prism	Lukes, F., 1958
[58]	114.759	4.024	specimen of about 20 degree apex angle;	
	117.425	4.024	accuracy of deviation angle measure-	
	205.588	4.067	ment about 1' corresponding to an	
	208.260	4.068	error of 0.001 in refractive index;	
	210.937	4.071	average accuracy of temperature mea-	
	213.593	4.068	surement about 0.5 K; data taken	
	229.634	4.079	from a figure.	
	263.018	4.093		
	263.029	4.095		
	275.044	4.099		
	292.423	4.111		
	309.782	4.118		
	320.479	4.126		
	353.879	4.144		
	369.909	4.152		
	389.940	4.160		
	391.283	4.162		
	408.652	4.172		
	436.693	4.182		
3	(λ=2.2	6 μm)	High purity single crystal; prism	Lukes, F., 1958
[58]	113.540	4.008	specimen of about 20 degree apex angle;	- •
-	116.229	4.004	accuracy of deviation angle measure-	
	117.590	4.007	ment about 1' corresponding to an	
	205.555	4.046	error of 0.001 in refractive index;	
	208.262	4.048	average accuracy of temperature mea-	
	232.617	4.057	surement about 0.5 K; data read from	
	250.216	4.067	a figure.	
	275.927	4.007	a rrgate.	
	293.521	4.086		
	308.408	4.092		
	323.290	4.098		
	344.947	4.109		
	354.429 370.667	4.116 4.122		

TABLE A-6. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence) (continued)

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
3(cont.)	390.964	4.131		Lukes, F., 1958
[58]	411.269	4.141		
	438.336	4.154		
4	(λ=2.3	6 µm)	High purity single crystal; prism	Lukes, F., 1958
[58]	113.349	4.004	specimen of about 20 degree apex angle;	
	117.338	4.001	accuracy of deviation angle measure-	
	117.349	4.004	ment about 1' corresponding to an	
	208.168	4.044	error of 0.001 in refractive index;	
	210.835	4.044	average accuracy of temperature mea-	
	212.178 234.881	4.047 4.056	surement about 0.5 K; data taken	
	252.250	4.056	from a figure.	
	274.957	4.076		
	290.988	4.084		
	309.680	4.091		
	321.705	4.098		
	343.084	4.110		
	356.428	4.113		
	369.797	4.122		
	391.156	4.129		
	411.196	4.139		
	437.909	4.151		
5 [58]	(λ=2.5	1 μm)	High purity single crystal; prism	Lukes, F., 1958
	205.502	4.030	specimen of about 20 degree apex angle;	
	213.619	4.032	accuracy of deviation angle measure-	
	216.326	4.034	ment about 1' corresponding to an	
	256.933	4.054	error of 0.001 in refractive index;	
	275.869 293.463	4.060 4.068	average accuracy of temperature measurement about 0.5 K; data read from:	
	309.706	4.076	a figure.	
	321.886	4.081	d light.	
	346.245	4.092		
	357.074	4.098		
	370.605	4.103		
	393.609	4.113		
	409.856	4.122		
	438.261	4.130		
6	(λ=2.5	i2 μm)	High purity single crystal; prism	Lukes, F., 1958
[58]	208.112	4.029	specimen of about 20 degree apex angle;	
	216.122	4.032	accuracy of deviation angle measure-	
	260.209	4.055	ment about 1' corresponding to an	
	276.234	4.061	error of 0.001 in refractive index;	
	294.931	4.070	average accuracy of temperature mea-	
	309.623 322.977	4.076 4.082	surement about 0.5 K; data taken from a figure.	
	345.685	4.082	a itAnie.	
	356.372	4.098		
	368.397	4.104		
	392.438	4.115		
	409.797	4.122		
	437.837	4.132		
7	(λ=1.97	'0 μm)	Pure germanium crystal; prism angle:	Lukes, F., 1960
[36]	104.591	4.028	14°53'; ρ =1.2 Ω -cm; minimum deviation	
	108.842	4.029	method used; data read from a figure.	

TABLE A-6. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence) (continued)

7(cont.) 115.943	Lukes, F., 1960
158.571	
168.487	
179.873	
188.399	
198.326	
208.276	
216.791	
229.602	
236.714	
243.826	
249.525	
252.374	
259.486	
273.699	
282.236 4.105 289.348 4.109 296.449 4.111 302.136 4.114 312.109 4.120 323.507 4.127 332.032 4.131 336.284 4.132 339.144 4.135 344.832 4.137 349.117 4.141 353.391 4.144	
289.348	
296.449 4.111 302.136 4.114 312.109 4.120 323.507 4.127 332.032 4.131 336.284 4.132 339.144 4.135 344.832 4.137 349.117 4.141 353.391 4.144	
302.136	
312.109	
323.507	
332.032 4.131 336.284 4.132 339.144 4.135 344.832 4.137 349.117 4.141 353.391 4.144	
336.284 4.132 339.144 4.135 344.832 4.137 349.117 4.141 353.391 4.144	
339.144 4.135 344.832 4.137 349.117 4.141 353.391 4.144	
344.832 4.137 349.117 4.141 353.391 4.144	
349.117 4.141 353.391 4.144	
366.191 4.150	
374.716 4.153	
380.415 4.157	
386.125 4.161	
393.249 4.166	
398.947 4.170	
408.898 4.174	
414.630 4.180	
8 (λ=2.190 μm) Pure germanium crystal; prism angle:	Lukes, F., 1960
[36] 109.878 4.005 14°53°; ρ=1.2 Ω-cm; minimum deviation	
115.501 4.006 method used; data read from a figure.	
142.275 4.017	
156.364 4.022	
167.637 4.027	
180.304 4.030	
188.770 4.035	
201.455 4.040	
208.526 4.046	
221.193 4.049	
222.624 4.052	
233.879 4.055	
242.335 4.058	
250.801 4.063	
255.030 4.065	
263.486 4.068	
277.593 4.075 284.646 4.079	
284.646 4.079	
297.323 4.083	
304.385 4.088	

TABLE A-6. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence) (continued)

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
8(cont.)	312.860	4.093		Lukes, F., 1960
[36]	321.334	4.099		
	332.598	4.102		
	342.485	4.109		
	352.346	4.112		
	360.829	4.118		
	376.331	4.125		
	379.165	4.127		
	390.446	4.133		
	398.921	4.138		
	407.378	4.142		
	421.511	4.152		
	435.609	4.158		
	439.838	4.160		
	445.487	4.163		
	459.603	4.171		
	468.096	4.179		
	479.378	4.184		
	487.852	4.189		
	499.161	4.197		
	506,205 517.514	4.200 4.208		
	525.971	4.212		
	534.464	4.219		
9	(λ=2.40	19 Um)	Pure germanium crystal; prism angle:	Lukes, F., 1960
[36]	147.914	4.003	14°53'; $\rho=1.2 \Omega$ -cm; minimum deviation	
	159.202	4.006	method used; data read from a figure.	
	176.157	4.013		
	198.746	4.021		
	205.815	4.024		
	215.721	4.030		
	224.192	4.033		
	234.078	4.037		
	236.916	4.039		
	246.808	4.044		
	253.884	4.048		
	263.771	4.052		
	268.009	4.054		
	273.670	4.057		
	282.148	4.061		
	287.802	4.064		
	293.449	4.065		
	301.927	4.069		
	330.210	4.084		
	357.065 376.858	4.097 4.107		
	376.858 389.581	4.107		
	405.128	4.113		
	416.449	4.128		
	マエリ・ササブ	7.140		
	429 179	4.135		
	429.179 441.909	4.135 4.142		
	441.909	4.142		
	441.909 448.992	4.142 4.147		
	441.909	4.142		

TABLE A-6. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence) (continued)

Data Set	T	n	Specifications and Remarks	Author(s), Year
[Ref.]				
10	(λ=3.82	. 1. 1	Pure germanium crystal; prism angle:	Lukes, F., 1960
[36]	306.022	4.030	14°53'; $\rho=1.2~\Omega-cm$; minimum deviation	
	320.151	4.034	method used; data read from a figure.	
	332.917	4.041		
	342.821	4.045		
	358.393	4.051		
	369.728	4.056		
	379.654	4.062		
	383.879	4.062		
	383.902	4.063		
	388.150	4.065		
	398.076	4.071		
	403.721	4.071		
	419.315	4.079		
	434.898	4.087		
	439.180	4.091		
	456.160	4.097		
	474.593	4.107		
	485.917	4.112		
	497.263	4.118		
	505.758	4.121		
	522.761	4.129		
	535.516	4.136		
11	(λ=5.15	56 µm)	Pure germanium crystal; prism angle:	Lukes, F., 1960
[36]	301.528	4.016	14°53'; $\rho=1.2 \Omega$ -cm; minimum deviation	
	321.286	4.021	method used; data read from a figure.	
	335.432	4.029		
	346.740	4.035		
	363.688	4.041		
	386.311	4.053		
	408.920	4.063		
	424.467	4.070		
	437.184	4.075		
	461.208	4.086		
	472.516	4.092		
12	(λ=2.5	554 μm)	Good optical grade germanium samples;	Icenogle, H.W.,
[5]	150	4.00541	supplied by Exotic Materials, Inc.;	Platt, B.C., and
	158	4.00775	prism specimen; measured with a modi-	Wolfe, W.L., 1976
	165	4.00997	fied minimum deviation method; data	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	172	4.01248	taken from a table.	
	177	4.01479	anner 110m a, capacit	
	186	4.01753		
	192	4.02031		
	199	4.02305		
	203	4.02492		
	208	4.02712		
	212	4.02900		
	216	4.03039		
	221	4.03287		
	227	4.03601		
	231	4.03721		
	236	4.03893		
	240	4.04096		
	243	4.04209		
	247	4.04407		
	254	4.04641		
	254	4.04641		

TABLE A-6. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence) (continued)

Data Set [Ref.]	Т	n	Specifications and Remarks	Author(s), Year
12(cont.)	257	4.04832		Icenogle, H.W.,
[5]	261	4.04994		Platt, B.C., and
	266	4.05181		Wolfe, W.L., 1976
	269	4.05284		
	272	4.05429		
	277	4.05655		
	281	4.05836		
13		2.732 µm)	Good optical grade germanium samples;	lcenogle, H.W., et
[5]	101	3.98111	supplied by Exotic Materials Irc.;	al., 1976
	110	3.98237	prism specimen; measured with a modi-	
	117	3.98419	fied minimum deviation method; data	
	120	3.98508	taken from a table.	
	127	3.98728		
	133	3.98888		
	140	3.99107		
	146 152	3.99331		
	158	3.99534 3.99774		
	165	4.00026		
	171	4.00277		
	178	4.00565		
	186	4.00938		
	196	4.01293		
	203	4.01582		
	212	4.01918		
	221	4.02229		
	229	4.02516		
	236	4.02893		
	244	4.03202		
	252	4.03554		
	257	4.03767		
	262	4.03937		
	270	4.04257		
	276	4.04562		
	283	4.04833		
14	(λ=4	.414 μm)	Good optical grade germanium samples;	Icenogle, H.W., et
[5]	101	3.95198	supplied by Exotic Materials Inc.;	al., 1976
	107	3.95220	prism specimen; measured with a moli-	
	114	3.95407	fied minimum deviation method; dat:	
	121	3.95579	taken from a table.	
	129	3.95798		
	137	3.96026		
	145	3.96295		
	150	3.96463		
	156	3.96678		
	165	3.96806		
	169 177	3.97126 3.97422		
	177 185	3.97422		
	185 195	3.98276		
	202	3.98493		
	202 211	3.98699		
	218	3.98967		
	224	3.99240		
	232	3.99591		

REFRACTIVE INDEX OF SILICON AND GERMANIUM

TABLE A-6. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence) (continued)

Data Set [Ref.]	T	n	Specifications and Remarks	Author(s), Year
14(cont.)	249	4.00305		Icenogle, H.W.,
[5]	259	4.00655		Platt, B.C., and
	263	4.00848		Wolfe, W.L., 1976
	269	4.01095		
	274	4.01236		
	278	4.01435		
	283	4.01635		
15	(λ=	10.27 μm)	Good optical grade germanium samples;	Icenogle, H.W., et
[5]	95	3.93562	supplied by Exotic Materials, Inc.;	al., 1976
	104	3.93692	prism specimen; measured with a modi-	
	112	3.93909	fied minimum deviation method; data	
	120	3.94088	taken from a table.	
	124	3.94335		
	134	3.94501		
	140	3.94639		
	147	3.94898		
	153	3.95075		
	160	3.95295		
	166	3.95497		
	173	3.95754		
	183	3.96090		
	192	3.96390		
	204	3.96808		
	210	3.97028		
	217	3.97296		
	226	3.97587		
	234	3.86896		
	239	3.98113		
	246	3.98387		
	253	3.98633		
	260	3.98923		
	268	3.99203		
	274	3.99458		
	278	3.99634	•	
	284	3.9985		

TABLE A-7. EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence)

[Temperature, T, K; Wavelength, λ , μm ; Temperature Derivative of Refractive Index, dn/dT, $10^{-4} K^{-1}$]

ata Set [Ref.]	λ	dn/dT	Specifications and Remarks	Author(s), Year
1	(T=29	97.5 K)	Germanium crystal; grown at the General	Rank, O.H.,
[35]	1.934	5.919	Electric Co., Electronics Laboratory,	Bennett, H.E., and
	2.174	5.285	Electronic Park, Syracuse, NY; plane	Cronemeyer, D.C.,
	2.246	5.251	parallel plate specimen of 3.0575 mm	1954
	2.401	5.037	thick and 28 mm clear aperture; refrac-	
			tive indices measured by interference	
			method; dn/dT determined; data taken	
			from a table.	
2	(T=116	-440 K)	Single crystal; high purity; prism	Lukes, F., 1957
[58]	1.82 5.36		specimen of about 20 degree apex angle;	,,,
3	1.90	5.10	refractive index for several wavelengths	
	1.98	5.00	measured in the temperature range be-	
	2.07	4.84	tween 116 and 440 K; it was found that	
	2.25	4.60	the refractive index of germanium in-	
	2.34	4.55	creases linearly with the temperature	
	2.51	4.39	in the wavelength region between 1.8	
	2.51	4.55	and 2.5 µm; dn/dT determined; data	
			taken from a figure.	
3	(T=116-440 K)		High purity single crystal; prism	Lukes, F., 1958
[59]	0.961 9.352		specimen of 20 degree apex angle;	mukes, r., 1930
[27]	0.961	8.929	refractive indices determined in the	
	1.349	6.890	temperature range from 116 to 440 K;	
	1.349	6.819	dn/dT determined; data taken from a	
			· · · · · · · · · · · · · · · · · · ·	
	1.349 1.918	6.608	figure.	
		5.097		
	2.000	4.992		
	2.075	4.852		
	2.260	4.607		
	2.349	4.537		
	2.514	4.432		
4	(T=116-440 K)		High purity single crystal; prism	Lukes, F., 1958
[59]	0.667	-13.038	specimen of 20 degree apex angle;	
	0.957	10.688	refractive indices determined in the	
			temperature range from 116 to 440 K;	
			dn/dT determined; data taken from a	
			figure.	
5	-	-540 K)	Pure germanium crystal; prism angle	Lukes, F., 1960
[36]	1.96	5.20	about 20 degrees: ρ =40 Ω -cm; minimum	
	2.17	4.79	deviation method used for refractive	
	3.81	4.09	indices determined; dn/dT determined;	
	5.07	3.99	data taken from a figure.	
6	(T=100+540 K)		Pure germanium crystal; prism angle	Lukes, F., 1960
[36]	1.96	5.29	about 15 degrees: ρ=1.2 Ω-cm; m: nimum	
	2.17	4.81	deviation method used for refractive	
	2.39	4.59	indices determination; dn/dT determined	
	3.81	4.24	data taken from a figure.	
	5.06	4.14	Ç	
7	(T=100-540 K)		Pure germanium crystal; prism angle	Lukes, F., 1960
[36]	2.19	4.887	about 15 degree; ρ=0.016 Ω-cm; minimum	
	2.40	4.685	deviation method used to determine the	

REFRACTIVE INDEX OF SILICON AND GERMANIUM

TABLE A-7. EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) (continued)

Data Set [Ref.]	λ	dn/dT	Specifications and Remarks	Author(s), Year
7(cont.)	3.82	3.989	refractive index; dn/dT determined;	Lukes, F., 1960
[36]	5.05	3.952	data taken from a figure.	
8	(T=173-	298 K)	Good optical grade germanium samples;	Icenogle, H.W.,
[5]	2.554	3.96	supplied by Exotic Materials, Inc.;	Platt, B.C., and
	to		prism specimen; measured with a modi-	Wolfe, W.L., 1967
	12.1		fied minimum deviation method; data taken from a table.	

TABLE A-8. EXPERIMENTAL DATA ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence)

[Temperature, T, K; Wavelength, λ , μ m; Temperature Derivative of Refractive Index, dn/dT, $10^{-4}K^{-1}$]

Data Set [Ref.]	T dn/dT	Specifications and lemarks	Author(s), Year
i	(λ=1.970 μm)	Pure germanium crystal; prism angle of	Lukes, F., 1960
136]	140.663 3.902	14°53.0': p=1.2 Ω-cm; measurements made	• •
	170.323 3.982	by minimum deviation method; data taken	
	210.824 4.523	from a figure.	
	251.266 4.602		
	297.157 5.143		
	330.895 5.494		
	370.035 5.926		
Ż	$(\lambda = 2.190 \ \mu m)$	Pure germanium crystal; prism angle of	Lukes, F., 1960
[36]	109.596 3.361	14°53.0'; ρ=1.2 Ω-cm; measurements made	, ,
[00]	139.302 3.794	by minimum deviation methol; data taken	
	170.313 3.901	from a figure.	
	210.775 4.143		
	251.255 4.521		
	295.771 4.844		
	332.180 5.005		
	371.292 5.220		
	410.410 5.490		
	434.676 5.543		
	471.088 5.731		
	520.970 5.864		
	320.370 3.004		
3	$(\lambda = 2.409 \ \mu m)$	Pure germanium crystal; prism angle of	Lukes, F., 1960
[36]	140.622 3.576	14°53.0'; ρ=1.2 Ω-cm; measurements made	
	170.299 3.792	by minimum deviation method; data taken	
•	212.141 4.279	from a figure.	
	251.241 4.412		
	295.740 4.600		
	332.163 4.870		
	371.246 4.868		
	410.382 5.273		
	435.971 5.136		
	520.890 5.240		
4	(λ=3.826 μm)	Pure germanium crystal; prism angle of	Lukes, F., 1960
[36]	326.709 4.381	14°53.0'; $\rho=1.2 \Omega$ -cm; measurements made	· · · ·
	371.201 4.515	by minimum deviation method; data taken	
	421.083 4.648	from a figure.	
	469.611 4.727		
	520.821 4.697		
5	(λ=5.156 μm)	Pure germanium crystal; prism angle of	Lukes, F., 1960
[36]	302.419 4.138	14°53.0'; $\rho=1.2 \Omega$ -cm; measurements made	
	326.692 4.245	by minimum deviation method; data taken	
	371.187 4.406	from a figure.	
	421.073 4.566		
	472.279 4.509		